ترغب بنشر مسار تعليمي؟ اضغط هنا

Excitations and stability of weakly interacting Bose gases with multi-body interactions

102   0   0.0 ( 0 )
 نشر من قبل Danny Laghi
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider weakly interacting bosonic gases with local and non-local multi-body interactions. By using the Bogoliubov approximation, we first investigate contact interactions, studying the case in which the interparticle potential can be written as a sum of N-body {delta}-interactions, and then considering general contact potentials. Results for the quasi-particle spectrum and the stability are presented. We then examine non-local interactions, focusing on two different cases of 3-body non-local interactions. Our results are used for systems with 2- and 3-body {delta}-interactions and applied for realistic values of the trap parameters. Finally, the effect of conservative 3-body terms in dipolar systems and soft-core potentials (that can be simulated with Rydberg dressed atoms) is also studied.



قيم البحث

اقرأ أيضاً

The zero-temperature equation of state is analyzed in low-dimensional bosonic systems. In the dilute regime the equation of state is universal in terms of the gas parameter, i.e. it is the same for different potentials with the same value of the s-wa ve scattering length. Series expansions of the universal equation of state are reported for one- and two- dimensional systems. We propose to use the concept of energy-dependent s-wave scattering length for obtaining estimations of non-universal terms in the energy expansion. We test this approach by making a comparison to exactly solvable one-dimensional problems and find that the generated terms have the correct structure. The applicability to two-dimensional systems is analyzed by comparing with results of Monte Carlo simulations. The prediction for the non-universal behavior is qualitatively correct and the densities, at which the deviations from the universal equation of state become visible, are estimated properly. Finally, the possibility of observing the non-universal terms in experiments with trapped gases is also discussed.
The critical properties of the phase transition from a normal gas to a BEC (superfluid) of a harmonically confined Bose gas are addressed with the knowledge of an equation of state of the underlying homogeneous Bose fluid. It is shown that while the presence of the confinement trap arrests the usual divergences of the isothermal compressibility and heat capacities, the critical behavior manifests itself now in the divergence of derivatives of the mentioned susceptibilities. This result is illustrated with a mean-field like model of an equation of state for the homogeneous particle density as a function of the chemical potential and temperature of the gas. The model assumes the form of an ideal Bose gas in the normal fluid while in the superfluid state a function is proposed such that, both, asymptotically reaches the Thomas-Fermi solution of a weakly interacting Bose gas at large densities and low temperatures and, at the transition, matches the critical properties of the ideal Bose gas. With this model we obtain the {it global} thermodynamics of the harmonically confined gas, from which we analyze its critical properties. We discuss how these properties can be experimentally tested.
We consider the dynamics of dark matter solitons moving through non-uniform cigar-shaped Bose-Einstein condensates described by the mean field Gross-Pitaevskii equation with generalized nonlinearities, in the case when the condition for the modulatio n stability of the Bose-Einstein condensate is fulfilled. The analytical expression for the frequency of the oscillations of a deep dark soliton is derived for nonlinearities which are arbitrary functions of the density, while specific results are discussed for the physically relevant case of a cubic-quintic nonlinearity modeling two- and three-body interactions, respectively. In contrast to the cubic Gross-Pitaevskii equation for which the frequencies of the oscillations are known to be independent of background density and interaction strengths, we find that in the presence of a cubic-quintic nonlinearity an explicit dependence of the oscillations frequency on the above quantities appears. This dependence gives rise to the possibility of measuring these quantities directly from the dark soliton dynamics, or to manage the oscillation via the changes of the scattering lengths by means of Feshbach resonance. A comparison between analytical results and direct numerical simulations of the cubic-quintic Gross-Pitaevskii equation shows good agreement which confirms the validity of our approach.
We analyze the two-body momentum correlation function for a uniform weakly interacting one-dimensional Bose gas. We show that the strong positive correlation between opposite momenta, expected in a Bose-Einstein condensate with a true long-range orde r, almost vanishes in a phase-fluctuating quasicondensate where the long-range order is destroyed. Using the Luttinger liquid approach, we derive an analytic expression for the momentum correlation function in the quasicondensate regime, showing (i) the reduction and broadening of the opposite-momentum correlations (compared to the singular behavior in a true condensate) and (ii) an emergence of anticorrelations at small momenta. We also numerically investigate the momentum correlations in the crossover between the quasicondensate and the ideal Bose-gas regimes using a classical field approach and show how the anticorrelations gradually disappear in the ideal-gas limit.
We study the system of multi-body interacting bosons on a two dimensional optical lattice and analyze the formation of bound bosonic pairs in the context of the Bose-Hubbard model. Assuming a repulsive two-body interaction we obtain the signatures of pair formation in the regions between the Mott insulator lobes of the phase diagram for different choices of higher order local interactions. Considering the most general Bose-Hubbard model involving local multi-body interactions we investigate the ground state properties utilizing the cluster mean-field theory approach and further confirm the results by means of sophisticated infinite Projected Entangled Pair States calculations. By using various order parameters, we show that the choice of higher-order interaction can lead to pair superfluid phase in the system between two different Mott lobes. We also analyze the effect of temperature and density-dependent tunneling to establish the stability of the PSF phase.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا