ﻻ يوجد ملخص باللغة العربية
We consider weakly interacting bosonic gases with local and non-local multi-body interactions. By using the Bogoliubov approximation, we first investigate contact interactions, studying the case in which the interparticle potential can be written as a sum of N-body {delta}-interactions, and then considering general contact potentials. Results for the quasi-particle spectrum and the stability are presented. We then examine non-local interactions, focusing on two different cases of 3-body non-local interactions. Our results are used for systems with 2- and 3-body {delta}-interactions and applied for realistic values of the trap parameters. Finally, the effect of conservative 3-body terms in dipolar systems and soft-core potentials (that can be simulated with Rydberg dressed atoms) is also studied.
The zero-temperature equation of state is analyzed in low-dimensional bosonic systems. In the dilute regime the equation of state is universal in terms of the gas parameter, i.e. it is the same for different potentials with the same value of the s-wa
The critical properties of the phase transition from a normal gas to a BEC (superfluid) of a harmonically confined Bose gas are addressed with the knowledge of an equation of state of the underlying homogeneous Bose fluid. It is shown that while the
We consider the dynamics of dark matter solitons moving through non-uniform cigar-shaped Bose-Einstein condensates described by the mean field Gross-Pitaevskii equation with generalized nonlinearities, in the case when the condition for the modulatio
We analyze the two-body momentum correlation function for a uniform weakly interacting one-dimensional Bose gas. We show that the strong positive correlation between opposite momenta, expected in a Bose-Einstein condensate with a true long-range orde
We study the system of multi-body interacting bosons on a two dimensional optical lattice and analyze the formation of bound bosonic pairs in the context of the Bose-Hubbard model. Assuming a repulsive two-body interaction we obtain the signatures of