ﻻ يوجد ملخص باللغة العربية
The zero-temperature equation of state is analyzed in low-dimensional bosonic systems. In the dilute regime the equation of state is universal in terms of the gas parameter, i.e. it is the same for different potentials with the same value of the s-wave scattering length. Series expansions of the universal equation of state are reported for one- and two- dimensional systems. We propose to use the concept of energy-dependent s-wave scattering length for obtaining estimations of non-universal terms in the energy expansion. We test this approach by making a comparison to exactly solvable one-dimensional problems and find that the generated terms have the correct structure. The applicability to two-dimensional systems is analyzed by comparing with results of Monte Carlo simulations. The prediction for the non-universal behavior is qualitatively correct and the densities, at which the deviations from the universal equation of state become visible, are estimated properly. Finally, the possibility of observing the non-universal terms in experiments with trapped gases is also discussed.
We prepare and study strongly interacting two-dimensional Bose gases in the superfluid, the classical Berezinskii-Kosterlitz-Thouless (BKT) transition, and the vacuum-to-superfluid quantum critical regimes. A wide range of the two-body interaction st
We consider weakly interacting bosonic gases with local and non-local multi-body interactions. By using the Bogoliubov approximation, we first investigate contact interactions, studying the case in which the interparticle potential can be written as
We prepare a chemically and thermally one-dimensional (1d) quantum degenerate Bose gas in a single microtrap. We introduce a new interferometric method to distinguish the quasicondensate fraction of the gas from the thermal cloud at finite temperatur
The critical properties of the phase transition from a normal gas to a BEC (superfluid) of a harmonically confined Bose gas are addressed with the knowledge of an equation of state of the underlying homogeneous Bose fluid. It is shown that while the
In three dimensions, non-interacting bosons undergo Bose-Einstein condensation at a critical temperature, $T_{c}$, which is slightly shifted by $Delta T_{mathrm{c}}$, if the particles interact. We calculate the excitation spectrum of interacting Bose