ﻻ يوجد ملخص باللغة العربية
We consider the dynamics of dark matter solitons moving through non-uniform cigar-shaped Bose-Einstein condensates described by the mean field Gross-Pitaevskii equation with generalized nonlinearities, in the case when the condition for the modulation stability of the Bose-Einstein condensate is fulfilled. The analytical expression for the frequency of the oscillations of a deep dark soliton is derived for nonlinearities which are arbitrary functions of the density, while specific results are discussed for the physically relevant case of a cubic-quintic nonlinearity modeling two- and three-body interactions, respectively. In contrast to the cubic Gross-Pitaevskii equation for which the frequencies of the oscillations are known to be independent of background density and interaction strengths, we find that in the presence of a cubic-quintic nonlinearity an explicit dependence of the oscillations frequency on the above quantities appears. This dependence gives rise to the possibility of measuring these quantities directly from the dark soliton dynamics, or to manage the oscillation via the changes of the scattering lengths by means of Feshbach resonance. A comparison between analytical results and direct numerical simulations of the cubic-quintic Gross-Pitaevskii equation shows good agreement which confirms the validity of our approach.
In this work, we explore systematically various SO(2)-rotation-induced multiple dark-dark soliton breathing patterns obtained from stationary and spectrally stable multiple dark-bright and dark-dark waveforms in trapped one-dimensional, two-component
Matter-wave interference mechanisms in one-dimensional Bose-Einstein condensates that allow for the controlled generation of dark soliton trains upon choosing suitable box-type initial configurations are described. First, the direct scattering proble
We characterize the soliton solutions and their interactions for a system of coupled evolution equations of nonlinear Schrodinger (NLS) type that models the dynamics in one-dimensional repulsive Bose-Einstein condensates with spin one, taking advanta
In the present work, we develop an adiabatic invariant approach for the evolution of quasi-one-dimensional (stripe) solitons embedded in a two-dimensional Bose-Einstein condensate. The results of the theory are obtained both for the one-component cas
We present experimental results and a systematic theoretical analysis of dark-br ight soliton interactions and multiple-dark-bright soliton complexes in atomic t wo-component Bose-Einstein condensates. We study analytically the interactions b etween