ﻻ يوجد ملخص باللغة العربية
Recent experimental advances in using strain engineering to significantly alter the band structure of moderately correlated systems offer opportunities and challenges to weak-coupling renormalization group (RG) analysis approaches for predicting superconducting instabilities. On one hand, the RG approach can provide theoretical guidance. On the other hand, it is now imperative to better understand how the predictions of the RG approach depends on microscopic and non-universal model details. Here we focus on the effect of band-selective mass-renormalization often observed in angle resolved photoemission spectroscopy. Focusing on a specific example of uniaxially strained $rm{Sr_2RuO_4}$ we carry out the weak-coupling RG analysis from two sets of band structures as starting points: one is based on density functional theory (DFT) calculations and the other is based on angle-resolved photoemission spectroscopy (ARPES) measurements. Despite good agreement between the Fermi surfaces of the the two band structures we find the two sets of band structures to predict qualitatively different trends in the strain dependence of the superconducting transition temperature $T_c$ as well as the dominant channel.
In iron selenide superconductors only electron-like Fermi pockets survive, challenging the $S^{pm}$ pairing based on the quasi-nesting between the electron and hole Fermi pockets (as in iron arsenides). By functional renormalization group study we sh
We present a renormalization group (RG) analysis of a fermionic hot spot model of interacting electrons on the square lattice. We truncate the Fermi surface excitations to linearly dispersing quasiparticles in the vicinity of eight hot spots on the F
Weak-coupling approaches to the pairing problem in the iron pnictide superconductors have predicted a wide variety of superconducting ground states. We argue here that this is due both to the inadequacy of certain approximations to the effective low-
Orbital degrees of freedom of a Cooper pair play an important role in the unconventional superconductivity. To elucidate the orbital effect in the Kondo problem, we investigated a single magnetic impurity coupled to Cooper pairs with a $p_x +i p_y$ (
We discuss the influence of momentum-dependent correlations on the superconducting gap structure in iron-based superconductors. Within the weak coupling approach including self-energy effects at the one-loop spin-fluctuation level, we construct a dim