ترغب بنشر مسار تعليمي؟ اضغط هنا

Near-degeneracy of several pairing channels in multiorbital models for the Fe-pnictides

415   0   0.0 ( 0 )
 نشر من قبل Siegfried Graser
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Weak-coupling approaches to the pairing problem in the iron pnictide superconductors have predicted a wide variety of superconducting ground states. We argue here that this is due both to the inadequacy of certain approximations to the effective low-energy band structure, and to the natural near-degeneracy of different pairing channels in superconductors with many distinct Fermi surface sheets. In particular, we review attempts to construct two-orbital effective band models, the argument for their fundamental inconsistency with the symmetry of these materials, and the comparison of the dynamical susceptibilities in two- and five-orbital models. We then present results for the magnetic properties, pairing interactions, and pairing instabilities within a five-orbital Random Phase Approximation model. We discuss the robustness of these results for different dopings, interaction strengths, and variations in band structure. Within the parameter space explored, an anisotropic, sign-changing s-wave state and a d_x2-y2 state are nearly degenerate, due to the near nesting of Fermi surface sheets.



قيم البحث

اقرأ أيضاً

Using an RPA approximation, we have calculated the strengths of the singlet and triplet pairing interactions which arise from the exchange of spin and orbital fluctuations for a 2-orbital model of the Fe-pnictide superconductors. When the system is d oped with F, the electron pockets become dominant and we find that the strongest pairing occurs in the singlet d-wave pairing and the triplet p-wave pairing channels, which compete closely. The pairing structure in the singlet d-wave channel corresponds to a superposition of near neighbor intra-orbital singlets with a minus sign phase difference between the $d_{xz}$ and $d_{yz}$ pairs. The leading pairing configuration in the triplet channel also involves a nearest neighbor intra-orbital pairing. We find that the strengths of both the singlet and triplet pairing grow, with the singlet pairing growing faster, as the onsite Coulomb interaction approaches the value where the S=1 particle-hole susceptibility diverges.
107 - Emilian M. Nica , Qimiao Si 2019
Recent experiments in multiband Fe-based and heavy-fermion superconductors have challenged the long-held dichotomy between simple $s$- and $d$-wave spin-singlet pairing states. Here, we advance several time-reversal-invariant irreducible pairings tha t go beyond the standard singlet functions through a matrix structure in the band/orbital space, and elucidate their naturalness in multiband systems. We consider the $stau_{3}$ multiorbital superconducting state for Fe-chalcogenide superconductors. This state, corresponding to a $d+d$ intra- and inter-band pairing, is shown to contrast with the more familiar $d +text{i}d$ state in a way analogous to how the B- triplet pairing phase of enhe superfluid differs from its A- phase counterpart. In addition, we construct an analogue of the $stau_{3}$ pairing for the heavy-fermion superconductor CeCu$_{2}$Si$_{2}$, using degrees-of-freedom that incorporate spin-orbit coupling. Our results lead to the proposition that $d$-wave superconductors in correlated multiband systems will generically have a fully-gapped Fermi surface when they are examined at sufficiently low energies.
We report a Fe Kbeta x-ray emission spectroscopy study of local magnetic moments in the rare-earth doped iron pnictide Ca_{1-x}RE_xFe_2As_2 (RE=La, Pr, and Nd). In all samples studied the size of the Fe local moment is found to decrease significantly with temperature and goes from ~0.9 mu_B at T = 300 K to ~0.45 mu_B at T = 70 K. In the collapsed tetragonal (cT) phase of Nd- and Pr-doped samples (T<70K) the local moment is quenched, while the moment remains unchanged for the La-doped sample, which does not show lattice collapse. Our results show that Ca_{1-x}RE_xFe_2As_2 (RE= Pr and Nd) exhibits a spin-state transition and provide direct evidence for a non-magnetic Fe^{2+} ion in the cT-phase, as predicted by Yildirim. We argue that the gradual change of the the spin-state over a wide temperature range reveals the importance of multiorbital physics, in particular the competition between the crystal field split Fe 3d orbitals and the Hunds rule coupling.
The phase diagrams of EuFe$_{2-x}$Co$_x$As$_2$ $(0 leq x leq 0.4)$ and EuFe$_2$As$_{2-y}$P$_y$ $(0 leq y leq 0.43)$ are investigated by Eu$^{2+}$ electron spin resonance (ESR) in single crystals. From the temperature dependence of the linewidth $Delt a H(T)$ of the exchange narrowed ESR line the spin-density wave (SDW) $(T < T_{rm SDW})$ and the normal metallic regime $(T > T_{rm SDW})$ are clearly distinguished. At $T > T_{rm SDW}$ the isotropic linear increase of the linewidth is driven by the Korringa relaxation which measures the conduction-electron density of states at the Fermi level. For $T < T_{rm SDW}$ the anisotropy probes the local ligand field, while the coupling to the conduction electrons disappears. With increasing substitution $x$ or $y$ the transition temperature $T_{rm SDW}$ decreases linearly accompanied by a linear decrease of the Korringa-relaxation rate from 8 Oe/K at $x=y=0$ down to 3 Oe/K at the onset of superconductivity at $x approx 0.2$ or at $y approx 0.3$, above which it remains nearly constant. Comparative ESR measurements on single crystals of the Eu diluted SDW compound Eu$_{0.2}$Sr$_{0.8}$Fe$_2$As$_2$ and superconducting (SC) Eu$_{0.22}$Sr$_{0.78}$Fe$_{1.72}$Co$_{0.28}$As$_2$ corroborate the leading influence of the ligand field on the Eu$^{2+}$ spin relaxation in the SDW regime as well as the Korringa relaxation in the normal metallic regime. Like in Eu$_{0.5}$K$_{0.5}$Fe$_2$As$_2$ a coherence peak is not detected in the latter compound at $T_{rm c}=21$ K, which is in agreement with the expected complex anisotropic SC gap structure.
415 - A.V. Chubukov , D. Efremov , 2008
We analyze antiferromagnetism and superconductivity in novel $Fe-$based superconductors within the itinerant model of small electron and hole pockets near $(0,0)$ and $(pi,pi)$. We argue that the effective interactions in both channels logarithmicall y flow towards the same values at low energies, {it i.e.}, antiferromagnetism and superconductivity must be treated on equal footings. The magnetic instability comes first for equal sizes of the two pockets, but looses to superconductivity upon doping. The superconducting gap has no nodes, but changes sign between the two Fermi surfaces (extended s-wave symmetry). We argue that the $T$ dependencies of the spin susceptibility and NMR relaxation rate for such state are exponential only at very low $T$, and can be well fitted by power-laws over a wide $T$ range below $T_c$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا