ﻻ يوجد ملخص باللغة العربية
Ultrasound Atomic Force Microscopy (US-AFM) has been used for subsurface imaging of nanostructures. The contact stiffness variations have been suggested as the origin of the image contrast. Therefore, to analyze the image contrast, the local changes in the contact stiffness due to the presence of subsurface features should be calculated. So far, only static simulations have been conducted to analyze the local changes in the contact stiffness and, consequently, the contrast in US-AFM. Such a static approach does not fully represent the real US-AFM experiment, where an ultrasound wave is launched either into the sample or at the tip, which modulates the contact stiffness. This is a time-dependent nonlinear dynamic problem rather than a static and stationary one. This letter presents dynamic 3D ultrasound analysis of contact stiffness in US-AFM (in contrast to static analysis) to realistically predict the changes in contact stiffness and thus the changes in the subsurface image contrast. The modulation frequency also influences the contact stiffness variations and, thus, the image contrast. The three-dimensional time-dependent ultrasound analysis will greatly aid in the contrast optimization of subsurface nanoimaging with US-AFM.
While Atomic Force Microscopy is mostly used to investigate surface properties, people have almost since its invention sought to apply its high resolution capability to image also structures buried within samples. One of the earliest techniques for t
While offering unprecedented resolution of atomic and electronic structure, Scanning Probe Microscopy techniques have found greater challenges in providing reliable electrostatic characterization at the same scale. In this work, we introduce Electros
Piezoelectric nanowires are promising materials for sensing, actuation and energy harvesting, due to their enhanced properties at the nanoscale. However, quantitative characterization of piezoelectricity in nanomaterials is challenging due to practic
The Transient Fluctuation Theorem is used to calibrate an Atomic Force Microscope by measuring the fluctuations of the work performed by a time dependent force applied between a collo{i}dal probe and the surface. From this measure one can easily extr
By employing single charge injections with an atomic force microscope, we investigated redox reactions of a molecule on a multilayer insulating film. First, we charged the molecule positively by attaching a single hole. Then we neutralized it by atta