ﻻ يوجد ملخص باللغة العربية
While offering unprecedented resolution of atomic and electronic structure, Scanning Probe Microscopy techniques have found greater challenges in providing reliable electrostatic characterization at the same scale. In this work, we introduce Electrostatic Discovery Atomic Force Microscopy, a machine learning based method which provides immediate quantitative maps of the electrostatic potential directly from Atomic Force Microscopy images with functionalized tips. We apply this to characterize the electrostatic properties of a variety of molecular systems and compare directly to reference simulations, demonstrating good agreement. This approach opens the door to reliable atomic scale electrostatic maps on any system with minimal computational overhead.
We report a new experimental technique for Kelvin probe force microscopy (KPFM) using the dissipation signal of frequency modulation atomic force microscopy for bias voltage feedback. It features a simple implementation and faster scanning as it requ
We report a Kelvin probe force microscopy (KPFM) implementation using the dissipation signal of a frequency modulation atomic force microscopy that is capable of detecting the gradient of electrostatic force rather than electrostatic force. It featur
Atomic force microscopy (AFM) with molecule-functionalized tips has emerged as the primary experimental technique for probing the atomic structure of organic molecules on surfaces. Most experiments have been limited to nearly planar aromatic molecule
By employing single charge injections with an atomic force microscope, we investigated redox reactions of a molecule on a multilayer insulating film. First, we charged the molecule positively by attaching a single hole. Then we neutralized it by atta
The Transient Fluctuation Theorem is used to calibrate an Atomic Force Microscope by measuring the fluctuations of the work performed by a time dependent force applied between a collo{i}dal probe and the surface. From this measure one can easily extr