ﻻ يوجد ملخص باللغة العربية
A well known question of Gromov asks whether every one-ended hyperbolic group $Gamma$ has a surface subgroup. We give a positive answer when $Gamma$ is the fundamental group of a graph of free groups with cyclic edge groups. As a result, Gromovs question is reduced (modulo a technical assumption on 2-torsion) to the case when $Gamma$ is rigid. We also find surface subgroups in limit groups. It follows that a limit group with the same profinite completion as a free group must in fact be free, which answers a question of Remeslennikov in this case.
Extending Culler-Shalen theory, Hara and the second author presented a way to construct certain kinds of branched surfaces in a $3$-manifold from an ideal point of a curve in the $operatorname{SL}_n$-character variety. There exists an essential surfa
We present a practical algorithm to test whether a 3-manifold given by a triangulation or an ideal triangulation contains a closed essential surface. This property has important theoretical and algorithmic consequences. As a testament to its practica
Checkerboard surfaces in alternating link complements are used frequently to determine information about the link. However, when many crossings are added to a single twist region of a link diagram, the geometry of the link complement stabilizes (appr
For an odd prime p the cohomology ring of an elementary abelian p-group is polynomial tensor exterior. We show that the ideal of essential classes is the Steenrod closure of the class generating the top exterior power. As a module over the polynomial
Divergence functions of a metric space estimate the length of a path connecting two points $A$, $B$ at distance $le n$ avoiding a large enough ball around a third point $C$. We characterize groups with non-linear divergence functions as groups having