ﻻ يوجد ملخص باللغة العربية
For an odd prime p the cohomology ring of an elementary abelian p-group is polynomial tensor exterior. We show that the ideal of essential classes is the Steenrod closure of the class generating the top exterior power. As a module over the polynomial algebra, the essential ideal is free on the set of Mui invariants.
Let $G$ be a topological group and $A$ a topological $G$-module (not necessarily abelian). In this paper, we define $H^{0}(G,A)$ and $H^{1}(G,A)$ and will find a six terms exact cohomology sequence involving $H^{0}$ and $H^{1}$. We will extend it to
Motivated in part by representation theoretic questions, we prove that if G is a finite quasi-simple group, then there exists an elementary abelian subgroup of G that intersects every conjugacy class of involutions of G.
In this paper we introduce a new definition of the first non-abelian cohomology of topological groups. We relate the cohomology of a normal subgroup $N$ of a topological group $G$ and the quotient $G/N$ to the cohomology of $G$. We get the inflation-
Tate cohomology (as well as Borel homology and cohomology) of connective K-theory for $G=(mathbb{Z}/2)^n$ was completely calculated by Bruner and Greenlees. In this note, we essentially redo the calculation by a different, more elementary method, and
The description of nilpotent Chernikov $p$-groups with elementary tops is reduced to the study of tuples of skew-symmetric bilinear forms over the residue field $mathbb{F}_p$. If $p e2$ and the bottom of the group only consists of $2$ quasi-cyclic su