ترغب بنشر مسار تعليمي؟ اضغط هنا

Numerical simulations and infrared spectro-interferometry reveal the wind collision region in gamma2 Velorum

112   0   0.0 ( 0 )
 نشر من قبل Astrid Lamberts
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Colliding stellar winds in massive binary systems have been studied through their radio, optical lines and strong X-ray emission for decades. More recently, near-infrared spectrointerferometric observations have become available in a few systems, but isolating the contribution from the individual stars and the wind collision region still remains a challenge. In this paper, we study the colliding wind binary gamma2 Velorum and aim at identifying the wind collision zone from infrared interferometric data, which provide unique spatial information to determine the wind properties. Our analysis is based on multi-epoch VLTI/AMBER data that allows us to separate the spectral components of both stars. First, we determine the astrometric solution of the binary and confirm previous distance measurements. We then analyse the spectra of the individual stars, showing that the O star spectrum is peculiar within its class. Then, we perform three-dimensional hydrodynamic simulations of the system from which we extract model images, visibility curves and closure phases which can be directly compared with the observed data. The hydrodynamic simulations reveal the 3D spiral structure of the wind collision region, which results in phase-dependent emission maps. Our model visibility curves and closure phases provide a good match when the wind collision region accounts for 3 to 10 per cent of the total flux in the near infrared. The dialogue between hydrodynamic simulations, radiative transfer models and observations allows us to fully exploit the observations. Similar efforts will be crucial to study circumstellar environments with the new generation of VLTI instruments like GRAVITY and MATISSE.



قيم البحث

اقرأ أيضاً

We present near-infrared H and K-band spectro-interferometric observations of the gaseous disk around the primary Be star in the delta Sco binary system, obtained in 2007 (between periastron passages in 2000 and 2011). Observations using the CHARA/MI RC instrument at H-band resolve an elongated disk with a Gaussian FWHM 1.18 x 0.91 mas. Using the Keck Interferometer, the source of the K-band continuum emission is only marginally spatially resolved, and consequently we estimate a relatively uncertain K-band continuum disk FWHM of 0.7 +/- 0.3 mas. Line emission on the other hand, He1 (2.0583 micron) and Br gamma (2.1657 micron), is clearly detected, with about 10% lower visibilities than those of the continuum. When taking into account the continuum/line flux ratio this translates into much larger sizes for the line emission regions: 2.2 +/- 0.4 mas and 1.9 +/- 0.3 mas for He1 and Br gamma respectively. Our KI data also reveal a relatively flat spectral differential phase response, ruling out significant off-center emission. We expect these new measurements will help constrain dynamical models being actively developed in order to explain the disk formation process in the delta Sco system and Be stars in general.
To understand how the circumstellar environments of post-AGB stars develop into planetary nebulae, we initiate a systematic study of 2D axisymmetric hydrodynamic simulations of protoplanetary nebula (pPN) with a modified ZEUS code. The aim of this fi rst work is to compare the structure of prolate ellipsoidal winds into a stationary ambient medium where both media can be either atomic or molecular. We specifically model the early twin-shock phase which generates a decelerating shell. A thick deformed and turbulent shell grows when an atomic wind expands into an atomic medium. In all other cases, the interaction shell region fragments into radial protrusions due to molecular cooling and chemistry. The resulting fingers eliminate any global slip parallel to the shell surface. This rough surface implies that weak shocks are prominent in the excitation of the gas despite the fast speed of advance. This may explain why low excitation molecular hydrogen is found towards the front of elliptical pPN. We constrain molecular dissociative fractions and timescales of fast $mathrm H_2$ winds and the pPN lifetime with wind densities $mathrm{sim10^{5}cm^{-3}}$ and shock speeds of $mathrm{80sim200,km,s^{-1}}$. We identify a variety of stages associated with thermal excitation of H$_2$ near-infrared emission. Generated line emission maps and position-velocity diagrams enable a comparison and distinction with post-AGB survey results. The $mathrm{1to0 , S(1)}$ $&$ $mathrm{2to1 , S(1)}$ lines are lobe-dominated bows rather than bipolar shells.
556 - M. Teodoro 2011
The periodic spectroscopic events in eta Carinae are now well established and occur near the periastron passage of two massive stars in a very eccentric orbit. Several mechanisms have been proposed to explain the variations of different spectral feat ures, such as an eclipse by the wind-wind collision boundary, a shell ejection from the primary star or accretion of its wind onto the secondary. All of them have problems explaining all the observed phenomena. To better understand the nature of the cyclic events, we performed a dense monitoring of eta Carinae with 5 Southern telescopes during the 2009 low excitation event, resulting in a set of data of unprecedented quality and sampling. The intrinsic luminosity of the He II 4686 emission line (L~310 Lsun) just before periastron reveals the presence of a very luminous transient source of extreme UV radiation emitted in the wind-wind collision (WWC) region. Clumps in the primarys wind probably explain the flare-like behavior of both the X-ray and He II 4686 light-curves. After a short-lived minimum, He II 4686 emission rises again to a ne
We present results from a study of the eclipsing, colliding-wind binary V444 Cyg that uses a combination of X-ray and optical spectropolarimetric methods to describe the 3-D nature of the shock and wind structure within the system. We have created th e most complete X-ray light curve of V444 Cyg to date using 40 ksec of new data from Swift, and 200 ksec of new and archived XMM-Newton observations. In addition, we have characterized the intrinsic, polarimetric phase-dependent behavior of the strongest optical emission lines using data obtained with the University of Wisconsins Half-Wave Spectropolarimeter. We have detected evidence of the Coriolis distortion of the wind-wind collision in the X-ray regime, which manifests itself through asymmetric behavior around the eclipses in the systems X-ray light curves. The large opening angle of the X-ray emitting region, as well as its location (i.e. the WN wind does not collide with the O star, but rather its wind) are evidence of radiative braking/inhibition occurring within the system. Additionally, the polarimetric results show evidence of the cavity the wind-wind collision region carves out of the Wolf-Rayet stars wind.
127 - Yael Naze 2017
We report on the first detection of a global change in the X-ray emitting properties of a wind-wind collision, thanks to XMM-Newton observations of the massive SMC system HD5980. While its lightcurve had remained unchanged between 2000 and 2005, the X-ray flux has now increased by a factor of ~2.5, and slightly hardened. The new observations also extend the observational coverage over the entire orbit, pinpointing the lightcurve shape. It has not varied much despite the large overall brightening, and a tight correlation of fluxes with orbital separation is found, without any hysteresis effect. Moreover, the absence of eclipses and of absorption effects related to orientation suggests a large size for the X-ray emitting region. Simple analytical models of the wind-wind collision, considering the varying wind properties of the eruptive component in HD5980, are able to reproduce the recent hardening and the flux-separation relationship, at least qualitatively, but they predict a hardening at apastron and little change in mean flux, contrary to observations. The brightness change could then possibly be related to a recently theorized phenomenon linked to the varying strength of thin-shell instabilities in shocked wind regions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا