ترغب بنشر مسار تعليمي؟ اضغط هنا

Numerical simulations of wind-driven protoplanetary nebulae. I. near-infrared emission

69   0   0.0 ( 0 )
 نشر من قبل Igor Novikov
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

To understand how the circumstellar environments of post-AGB stars develop into planetary nebulae, we initiate a systematic study of 2D axisymmetric hydrodynamic simulations of protoplanetary nebula (pPN) with a modified ZEUS code. The aim of this first work is to compare the structure of prolate ellipsoidal winds into a stationary ambient medium where both media can be either atomic or molecular. We specifically model the early twin-shock phase which generates a decelerating shell. A thick deformed and turbulent shell grows when an atomic wind expands into an atomic medium. In all other cases, the interaction shell region fragments into radial protrusions due to molecular cooling and chemistry. The resulting fingers eliminate any global slip parallel to the shell surface. This rough surface implies that weak shocks are prominent in the excitation of the gas despite the fast speed of advance. This may explain why low excitation molecular hydrogen is found towards the front of elliptical pPN. We constrain molecular dissociative fractions and timescales of fast $mathrm H_2$ winds and the pPN lifetime with wind densities $mathrm{sim10^{5}cm^{-3}}$ and shock speeds of $mathrm{80sim200,km,s^{-1}}$. We identify a variety of stages associated with thermal excitation of H$_2$ near-infrared emission. Generated line emission maps and position-velocity diagrams enable a comparison and distinction with post-AGB survey results. The $mathrm{1to0 , S(1)}$ $&$ $mathrm{2to1 , S(1)}$ lines are lobe-dominated bows rather than bipolar shells.



قيم البحث

اقرأ أيضاً

Bow shocks and related density enhancements produced by the winds of massive stars moving through the interstellar medium provide important information regarding the motions of the stars, the properties of their stellar winds, and the characteristics of the local medium. Since bow shocks are aspherical structures, light scattering within them produces a net polarization signal even if the region is spatially unresolved. Scattering opacity arising from free electrons and dust leads to a distribution of polarized intensity across the bow shock structure. That polarization encodes information about the shape, composition, opacity, density, and ionisation state of the material within the structure. In this paper we use the Monte Carlo radiative transfer code SLIP to investigate the polarization created when photons scatter in a bow shock-shaped region of enhanced density surrounding a stellar source. We present results assuming electron scattering, and investigate the polarization behaviour as a function of optical depth, temperature, and source of photons for two different cases: pure scattering and scattering with absorption. In both regimes we consider resolved and unresolved cases. We discuss the implication of these results as well as their possible use along with observational data to constrain the properties of observed bow shock systems. In different situations and under certain assumptions, our simulations can constrain viewing angle, optical depth and temperature of the scattering region, and the relative luminosities of the star and shock.
66 - N. C. Sterling 2017
We identify [Se III] 1.0994 micron in the planetary nebula (PN) NGC 5315 and [Kr VI] 1.2330 micron in three PNe, from spectra obtained with the FIRE spectrometer on the 6.5-m Baade Telescope. Se and Kr are the two most widely-detected neutron-capture elements in astrophysical nebulae, and can be enriched by s-process nucleosynthesis in PN progenitor stars. The detection of [Se III] 1.0994 micron is particularly valuable when paired with observations of [Se IV] 2.2858 micron, as it can be used to improve the accuracy of nebular Se abundance determinations, and allows Se ionization correction factor (ICF) schemes to be empirically tested for the first time. We present new effective collision strength calculations for Se^{2+} and Kr^{5+}, which we use to compute ionic abundances. In NGC 5315, we find that the Se abundance computed from Se^{3+}/H^+ is lower than that determined with ICFs that incorporate Se^{2+}/H^+. We compute new Kr ICFs that take Kr^{5+}/H^+ into account, by fitting correlations found in grids of Cloudy models between Kr ionic fractions and those of more abundant elements, and use these to derive Kr abundances in four PNe. Observations of [Se III] and [Kr VI] in a larger sample of PNe, with a range of excitation levels, are needed to rigorously test the ICF prescriptions for Se and our new Kr ICFs.
Near-infrared (2.5-5.0$,mu$m) low-resolution ($lambda/Deltalambda{sim}100$) spectra of 72 Galactic planetary nebulae (PNe) were obtained with the Infrared Camera (IRC) in the post-helium phase. The IRC, equipped with a $1{times}1$ window for spectros copy of a point source, was capable of obtaining near-infrared spectra in a slit-less mode without any flux loss due to a slit. The spectra show emission features including hydrogen recombination lines and the 3.3-3.5$,mu$m hydrocarbon features. The intensity and equivalent width of the emission features were measured by spectral fitting. We made a catalog providing unique information on the investigation of the near-infrared emission of PNe. In this paper, details of the observations and characteristics of the catalog are described.
We present the results of a meeting on numerical simulations of ionized nebulae held at the University of Kentucky in conjunction with the celebration of the 70th birthdays of Profs. Donald Osterbrock and Michael Seaton.
We present the largest survey of spectrally resolved mid-infrared water emission to date, with spectra for 11 disks obtained with the Michelle and TEXES spectrographs on Gemini North. Water emission is detected in 6 of 8 disks around classical T Taur i stars. Water emission is not detected in the transitional disks SR 24 N and SR 24 S, in spite of SR 24 S having pre-transitional disk properties like DoAr 44, which does show water emission (Salyk et al. 2015). With R~100,000, the TEXES water spectra have the highest spectral resolution possible at this time, and allow for detailed lineshape analysis. We find that the mid-IR water emission lines are similar to the narrow component in CO rovibrational emission (Banzatti & Pontoppidan 2015), consistent with disk radii of a few AU. The emission lines are either single peaked, or consistent with a double peak. Single-peaked emission lines cannot be produced with a Keplerian disk model, and may suggest that water participates in the disk winds proposed to explain single-peaked CO emission lines (Bast et al. 2011, Pontoppidan et al. 2011). Double-peaked emission lines can be used to determine the radius at which the line emission luminosity drops off. For HL Tau, the lower limit on this measured dropoff radius is consistent with the 13 AU dark ring (ALMA partnership et al. 2015). We also report variable line/continuum ratios from the disks around DR Tau and RW Aur, which we attribute to continuum changes and line flux changes, respectively. The reduction in RW Aur line flux corresponds with an observed dimming at visible wavelengths (Rodriguez et al. 2013).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا