ﻻ يوجد ملخص باللغة العربية
The close approach of the Fermi energy EF of a Dirac semimetal to the Dirac point ED uncovers new physics such as velocity renormalization,1,2,3 and the Dirac plasma 4,5 at |EF -ED| < kBT, where kBT is the thermal energy. In graphene, substrate disorder drives fluctuations in EF. Three-dimensional topological Dirac semimetals (TDS)6,7 obviate the substrate, and should show reduced EF fluctuations due to better metallic screening and higher dielectric constants. Here we map the potential fluctuations in TDS Na3Bi using a scanning tunneling microscope. The rms potential fluctuations are significantly smaller than room temperature ({Delta}EF,rms = 4-6 meV = 40-70 K) and comparable to the highest quality graphene on h-BN;8 far smaller than graphene on SiO2,9,10 or the Dirac surface state of a topological insulator.11 Surface Na vacancies produce a novel resonance close to the Dirac point with surprisingly large spatial extent and provides a unique way to tune the surface density of states in a TDS thin-film material.
We report spin-to-charge and charge-to-spin conversion at room temperature in heterostructure devices that interface an archetypal Dirac semimetal, Cd3As2, with a metallic ferromagnet, Ni0.80Fe0.20 (permalloy). The spin-charge interconversion is dete
Three-dimensional (3D) topological Dirac semimetal, when thinned down to 2D few layers, is expected to possess gapped Dirac nodes via quantum confinement effect and concomitantly display the intriguing quantum spin Hall (QSH) insulator phase. However
Three-dimensional topological Dirac semimetals have hitherto stimulated unprecedented research interests as a new class of quantum materials. Breaking certain types of symmetries has been proposed to enable the manipulation of Dirac fermions; and tha
Alloys of Bi$_2$Te$_3$ and Sb$_2$Te$_3$ ((Bi$_{1-x}$Sb$_x$)$_2$Te$_3$) have played an essential role in the exploration of topological surface states, allowing us to study phenomena that would otherwise be obscured by bulk contributions to conductivi
The linear band crossings of 3D Dirac and Weyl semimetals are characterized by a charge chirality, the parallel or anti-parallel locking of electron spin to its momentum. Such materials are believed to exhibit a ${bf E} cdot {bf B}$ chiral magnetic e