ترغب بنشر مسار تعليمي؟ اضغط هنا

Defect Role in the Carrier Tunable Topological Insulator (Bi$_{1-x}$Sb$_x$)$_2$Te$_3$ Thin Films

85   0   0.0 ( 0 )
 نشر من قبل Zhenyu Wang
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Alloys of Bi$_2$Te$_3$ and Sb$_2$Te$_3$ ((Bi$_{1-x}$Sb$_x$)$_2$Te$_3$) have played an essential role in the exploration of topological surface states, allowing us to study phenomena that would otherwise be obscured by bulk contributions to conductivity. Thin films of these alloys have been particularly important for tuning the energy of the Fermi level, a key step in observing spin-polarized surface currents and the quantum anomalous Hall effect. Previous studies reported the chemical tuning of the Fermi level to the Dirac point by controlling the Sb:Bi composition ratio, but the optimum ratio varies widely across various studies with no consensus. In this work, we use scanning tunneling microscopy and Landau level spectroscopy, in combination with X-ray photoemission spectroscopy to isolate the effects of growth factors such as temperature and composition, and to provide a microscopic picture of the role that disorder and composition play in determining the carrier density of epitaxially grown (Bi,Sb)$_2$Te$_3$ thin films. Using Landau level spectroscopy, we determine that the ideal Sb concentration to place the Fermi energy to within a few meV of the Dirac point is $xsim 0.7$. However, we find that the post- growth annealing temperature can have a drastic impact on microscopic structure as well as carrier density. In particular, we find that when films are post-growth annealed at high temperature, better crystallinity and surface roughness are achieved; but this also produces a larger Te defect density, adding n-type carriers. This work provides key information necessary for optimizing thin film quality in this fundamentally and technologically important class of materials.



قيم البحث

اقرأ أيضاً

We investigate the photocurrent properties of the topological insulator (Bi$_{0.5}$Sb$_{0.5}$)$_2$Te$_3$ on SrTiO$_3$-substrates. We find reproducible, submicron photocurrent patterns generated by long-range chemical potential fluctuations, occurring predominantly at the topological insulator/substrate interface. We fabricate nano-plowed constrictions which comprise single potential fluctuations. Hereby, we can quantify the magnitude of the disorder potential to be in the meV range. The results further suggest a dominating photo-thermoelectric current generated in the surface states in such nanoscale constrictions.
In a topological insulator (TI), if its spin-orbit coupling (SOC) strength is gradually reduced, the TI eventually transforms into a trivial insulator beyond a critical point of SOC, at which point the bulk gap closes: this is the standard descriptio n of the topological phase transition (TPT). However, this description of TPT, driven solely by the SOC (or something equivalent) and followed by closing and reopening of the bulk band gap, is valid only for infinite-size samples, and little is known how TPT occurs for finite-size samples. Here, using both systematic transport measurements on interface-engineered(Bi$_{1-x}$In$_x$)$_2$Se$_3$ thin films and theoretical simulations (with animations in Supporting Information) we show that description of TPT in finite-size samples needs to be substantially modified from the conventional picture of TPT due to surface-state hybridization and bulk confinement effects. We also show that the finite-size TPT is composed of two separate transitions, topological-normal transition (TNT) and metal-insulator transition (MIT) by providing a detailed phase diagram in the two-dimensional phase space of sample size and SOC strength.
107 - Prosper Ngabonziza , Yi Wang , 2018
An important challenge in the field of topological materials is to carefully disentangle the electronic transport contribution of the topological surface states from that of the bulk. For Bi$_2$Te$_3$ topological insulator samples, bulk single crysta ls and thin films exposed to air during fabrication processes are known to be bulk conducting, with the chemical potential in the bulk conduction band. For Bi$_2$Te$_3$ thin films grown by molecular beam epitaxy, we combine structural characterization (transmission electron microscopy), chemical surface analysis as function of time (x-ray photoelectron spectroscopy) and magnetotransport analysis to understand the low defect density and record high bulk electron mobility once charge is doped into the bulk by surface degradation. Carrier densities and electronic mobilities extracted from the Hall effect and the quantum oscillations are consistent and reveal a large bulk carrier mobility. Because of the cylindrical shape of the bulk Fermi surface, the angle dependence of the bulk magnetoresistance oscillations is two-dimensional in nature.
193 - A. Kogar , S. Vig , A. Thaler 2015
We used low-energy, momentum-resolved inelastic electron scattering to study surface collective modes of the three-dimensional topological insulators Bi$_2$Se$_3$ and Bi$_{0.5}$Sb$_{1.5}$Te$_{3-x}$Se$_{x}$. Our goal was to identify the spin plasmon p redicted by Raghu and co-workers [S. Raghu, et al., Phys. Rev. Lett. 104, 116401 (2010)]. Instead, we found that the primary collective mode is a surface plasmon arising from the bulk, free carrers in these materials. This excitation dominates the spectral weight in the bosonic function of the surface, $chi (textbf{q},omega)$, at THz energy scales, and is the most likely origin of a quasiparticle dispersion kink observed in previous photoemission experiments. Our study suggests that the spin plasmon may mix with this other surface mode, calling for a more nuanced understanding of optical experiments in which the spin plasmon is reported to play a role.
To achieve and utilize the most exotic electronic phenomena predicted for the surface states of 3D topological insulators (TI),it is necessary to open a Dirac-mass gap in their spectrum by breaking time-reversal symmetry. Use of magnetic dopant atoms to generate a ferromagnetic state is the most widely used approach. But it is unknown how the spatial arrangements of the magnetic dopant atoms influence the Dirac-mass gap at the atomic scale or, conversely, whether the ferromagnetic interactions between dopant atoms are influenced by the topological surface states. Here we image the locations of the magnetic (Cr) dopant atoms in the ferromagnetic TI Cr$_{0.08}$(Bi$_{0.1}$Sb$_{0.9}$)$_{1.92}$Te$_3$. Simultaneous visualization of the Dirac-mass gap $Delta(r)$ reveals its intense disorder, which we demonstrate directly is related to fluctuations in $n(r)$, the Cr atom areal density in the termination layer. We find the relationship of surface-state Fermi wavevectors to the anisotropic structure of $Delta(r)$ consistent with predictions for surface ferromagnetism mediated by those states. Moreover, despite the intense Dirac-mass disorder, the anticipated relationship $Delta(r)propto n(r)$ is confirmed throughout, and exhibits an electron-dopant interaction energy $J^*$=145$meVcdot nm^2$. These observations reveal how magnetic dopant atoms actually generate the TI mass gap locally and that, to achieve the novel physics expected of time-reversal-symmetry breaking TI materials, control of the resulting Dirac-mass gap disorder will be essential.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا