ﻻ يوجد ملخص باللغة العربية
The linear band crossings of 3D Dirac and Weyl semimetals are characterized by a charge chirality, the parallel or anti-parallel locking of electron spin to its momentum. Such materials are believed to exhibit a ${bf E} cdot {bf B}$ chiral magnetic effect that is associated with the near conservation of chiral charge. Here, we use magneto-terahertz spectroscopy to study epitaxial Cd$_3$As$_2$ films and extract their conductivities $sigma(omega)$ as a function of ${bf E} cdot {bf B}$. As field is applied, we observe a remarkably sharp Drude response that rises out of the broader background. Its appearance is a definitive signature of a new transport channel and consistent with the chiral response, with its spectral weight a measure of the net chiral charge and width a measure of the scattering rate between chiral species. The field independence of the chiral relaxation establishes that it is set by the approximate conservation of the isospin that labels the crystalline point-group representations.
Chiral anomaly, a non-conservation of chiral charge pumped by the topological nontrivial gauge fields, has been predicted to exist in Weyl semimetals. However, until now, the experimental signature of this effect exclusively relies on the observation
The electron-phonon interaction (EPI) is instrumental in a wide variety of phenomena in solid-state physics, such as electrical resistivity in metals, carrier mobility, optical transition and polaron effects in semiconductors, lifetime of hot carrier
Weyl semimetals provide the realization of Weyl fermions in solid-state physics. Among all the physical phenomena that are enabled by Weyl semimetals, the chiral anomaly is the most unusual one. Here, we report signatures of the chiral anomaly in the
We report spin-to-charge and charge-to-spin conversion at room temperature in heterostructure devices that interface an archetypal Dirac semimetal, Cd3As2, with a metallic ferromagnet, Ni0.80Fe0.20 (permalloy). The spin-charge interconversion is dete
We report a detailed magneto-transport study in single crystals of NbP. High quality crystals were grown by vapour transport method. An exceptionally large magnetoresistance is confirmed at low temperature which is non-saturating and is linear at hig