ﻻ يوجد ملخص باللغة العربية
Quantum friction, the electromagnetic fluctuation-induced frictional force decelerating an atom which moves past a macroscopic dielectric body, has so far eluded experimental evidence despite more than three decades of theoretical studies. Inspired by the recent finding that dynamical corrections to such an atoms internal dynamics are enhanced by one order of magnitude for vertical motion -- compared to the paradigmatic setup of parallel motion -- we generalize quantum friction calculations to arbitrary angles between the atoms direction of motion and the surface in front of which it moves. Motivated by the disagreement between quantum friction calculations based on Markovian quantum master equations and time-dependent perturbation theory, we carry out our derivations of the quantum frictional force for arbitrary angles employing both methods and compare them.
We study quantum dissipative effects that result from the non-relativistic motion of an atom, coupled to a quantum real scalar field, in the presence of a static imperfect mirror. Our study consists of two parts: in the first, we consider accelerated
Quantum learning (in metrology and machine learning) involves estimating unknown parameters from measurements of quantum states. The quantum Fisher information matrix can bound the average amount of information learnt about the unknown parameters per
An atom moving in a vacuum at constant velocity and parallel to a surface experiences a frictional force induced by the dissipative interaction with the quantum fluctuations of the electromagnetic field. We show that the combination of nonequilibrium
One version of the energy-time uncertainty principle states that the minimum time $T_{perp}$ for a quantum system to evolve from a given state to any orthogonal state is $h/(4 Delta E)$ where $Delta E$ is the energy uncertainty. A related bound calle
We investigate the influence of spatial dispersion on atom-surface quantum friction. We show that for atom-surface separations shorter than the carriers mean free path within the material, the frictional force can be several orders of magnitude large