ﻻ يوجد ملخص باللغة العربية
An atom moving in a vacuum at constant velocity and parallel to a surface experiences a frictional force induced by the dissipative interaction with the quantum fluctuations of the electromagnetic field. We show that the combination of nonequilibrium dynamics, anomalous Doppler effect and spin-momentum locking of light mediates an intriguing interplay between the atoms translational and rotational motion. In turn, this deeply affects the drag force in a way that is reminiscent of classical rolling friction. Our fully non-Markovian and nonequilibrium description reveals counterintuitive features characterizing the atoms velocity-dependent rotational dynamics. These results prompt interesting directions for tuning the interaction and for investigating nonequilibrium dynamics as well as the properties of confined light.
We investigate the influence of spatial dispersion on atom-surface quantum friction. We show that for atom-surface separations shorter than the carriers mean free path within the material, the frictional force can be several orders of magnitude large
The structure and motion of carbon and h-BN nanotubes (NTs) deposited on graphene is inquired theoretically by simulations based on state-of-the-art interatomic force fields. Results show that any typical cylinder-over-surface approximation is essent
The Casimir forces between two plates moving parallel to each other are found by calculating the vacuum electromagnetic stress tensor. The perpendicular force between the plates is modified by the motion but there is no lateral force on the plates. E
We present a formula for the spectroscopically accessible level shifts and decay rates of an atom moving at an arbitrary angle relative to a surface. Our Markov formulation leads to an intuitive analytic description whereby the shifts and rates are o
Thermodynamic principles are often deceptively simple and yet surprisingly powerful. We show how a simple rule, such as the net flow of energy in and out of a moving atom under nonequilibrium steady state condition, can expose the shortcomings of man