ﻻ يوجد ملخص باللغة العربية
One version of the energy-time uncertainty principle states that the minimum time $T_{perp}$ for a quantum system to evolve from a given state to any orthogonal state is $h/(4 Delta E)$ where $Delta E$ is the energy uncertainty. A related bound called the Margolus-Levitin theorem states that $T_{perp} geq h/(2 E)$ where E is the expectation value of energy and the ground energy is taken to be zero. Many subsequent works have interpreted $T_{perp}$ as defining a minimal time for an elementary computational operation and correspondingly a fundamental limit on clock speed determined by a systems energy. Here we present local time-independent Hamiltonians in which computational clock speed becomes arbitrarily large relative to E and $Delta E$ as the number of computational steps goes to infinity. We argue that energy considerations alone are not sufficient to obtain an upper bound on computational speed, and that additional physical assumptions such as limits to information density and information transmission speed are necessary to obtain such a bound.
When calculating the overhead of a quantum algorithm made fault-tolerant using the surface code, many previous works have used defects and braids for logical qubit storage and state distillation. In this work, we show that lattice surgery reduces the
This review article summarizes the requirement of low temperature conditions in existing experimental approaches to quantum computation and quantum simulation.
We present two universal models of quantum computation with a time-independent, frustration-free Hamiltonian. The first construction uses 3-local (qubit) projectors, and the second one requires only 2-local qubit-qutrit projectors. We build on Feynma
We present a detailed analysis of the modulated-carrier quantum phase gate implemented with Wigner crystals of ions confined in Penning traps. We elaborate on a recent scheme, proposed by two of the authors, to engineer two-body interactions between
Quantum learning (in metrology and machine learning) involves estimating unknown parameters from measurements of quantum states. The quantum Fisher information matrix can bound the average amount of information learnt about the unknown parameters per