ﻻ يوجد ملخص باللغة العربية
We present an algorithm that, with high probability, generates a random spanning tree from an edge-weighted undirected graph in $tilde{O}(n^{4/3}m^{1/2}+n^{2})$ time (The $tilde{O}(cdot)$ notation hides $operatorname{polylog}(n)$ factors). The tree is sampled from a distribution where the probability of each tree is proportional to the product of its edge weights. This improves upon the previous best algorithm due to Colbourn et al. that runs in matrix multiplication time, $O(n^omega)$. For the special case of unweighted graphs, this improves upon the best previously known running time of $tilde{O}(min{n^{omega},msqrt{n},m^{4/3}})$ for $m gg n^{5/3}$ (Colbourn et al. 96, Kelner-Madry 09, Madry et al. 15). The effective resistance metric is essential to our algorithm, as in the work of Madry et al., but we eschew determinant-based and random walk-based techniques used by previous algorithms. Instead, our algorithm is based on Gaussian elimination, and the fact that effective resistance is preserved in the graph resulting from eliminating a subset of vertices (called a Schur complement). As part of our algorithm, we show how to compute $epsilon$-approximate effective resistances for a set $S$ of vertex pairs via approximate Schur complements in $tilde{O}(m+(n + |S|)epsilon^{-2})$ time, without using the Johnson-Lindenstrauss lemma which requires $tilde{O}( min{(m + |S|)epsilon^{-2}, m+nepsilon^{-4} +|S|epsilon^{-2}})$ time. We combine this approximation procedure with an error correction procedure for handing edges where our estimate isnt sufficiently accurate.
We show variants of spectral sparsification routines can preserve the total spanning tree counts of graphs, which by Kirchhoffs matrix-tree theorem, is equivalent to determinant of a graph Laplacian minor, or equivalently, of any SDDM matrix. Our ana
Optimization algorithms and Monte Carlo sampling algorithms have provided the computational foundations for the rapid growth in applications of statistical machine learning in recent years. There is, however, limited theoretical understanding of the
The {sc Directed Maximum Leaf Out-Branching} problem is to find an out-branching (i.e. a rooted oriented spanning tree) in a given digraph with the maximum number of leaves. In this paper, we obtain two combinatorial results on the number of leaves i
Edge connectivity of a graph is one of the most fundamental graph-theoretic concepts. The celebrated tree packing theorem of Tutte and Nash-Williams from 1961 states that every $k$-edge connected graph $G$ contains a collection $cal{T}$ of $lfloor k/
Motivated by recent Linear Programming solvers, we design dynamic data structures for maintaining the inverse of an $ntimes n$ real matrix under $textit{low-rank}$ updates, with polynomially faster amortized running time. Our data structure is based