ﻻ يوجد ملخص باللغة العربية
The {sc Directed Maximum Leaf Out-Branching} problem is to find an out-branching (i.e. a rooted oriented spanning tree) in a given digraph with the maximum number of leaves. In this paper, we obtain two combinatorial results on the number of leaves in out-branchings. We show that - every strongly connected $n$-vertex digraph $D$ with minimum in-degree at least 3 has an out-branching with at least $(n/4)^{1/3}-1$ leaves; - if a strongly connected digraph $D$ does not contain an out-branching with $k$ leaves, then the pathwidth of its underlying graph UG($D$) is $O(klog k)$. Moreover, if the digraph is acyclic, the pathwidth is at most $4k$. The last result implies that it can be decided in time $2^{O(klog^2 k)}cdot n^{O(1)}$ whether a strongly connected digraph on $n$ vertices has an out-branching with at least $k$ leaves. On acyclic digraphs the running time of our algorithm is $2^{O(klog k)}cdot n^{O(1)}$.
The Rooted Maximum Leaf Outbranching problem consists in finding a spanning directed tree rooted at some prescribed vertex of a digraph with the maximum number of leaves. Its parameterized version asks if there exists such a tree with at least $k$ le
In 2001, Komlos, Sarkozy and Szemeredi proved that, for each $alpha>0$, there is some $c>0$ and $n_0$ such that, if $ngeq n_0$, then every $n$-vertex graph with minimum degree at least $(1/2+alpha)n$ contains a copy of every $n$-vertex tree with maxi
Edge connectivity of a graph is one of the most fundamental graph-theoretic concepts. The celebrated tree packing theorem of Tutte and Nash-Williams from 1961 states that every $k$-edge connected graph $G$ contains a collection $cal{T}$ of $lfloor k/
The minimum degree spanning tree (MDST) problem requires the construction of a spanning tree $T$ for graph $G=(V,E)$ with $n$ vertices, such that the maximum degree $d$ of $T$ is the smallest among all spanning trees of $G$. In this paper, we present
In the Survivable Network Design Problem (SNDP), the input is an edge-weighted (di)graph $G$ and an integer $r_{uv}$ for every pair of vertices $u,vin V(G)$. The objective is to construct a subgraph $H$ of minimum weight which contains $r_{uv}$ edge-