ترغب بنشر مسار تعليمي؟ اضغط هنا

Sampling Can Be Faster Than Optimization

107   0   0.0 ( 0 )
 نشر من قبل Yi-An Ma
 تاريخ النشر 2018
والبحث باللغة English




اسأل ChatGPT حول البحث

Optimization algorithms and Monte Carlo sampling algorithms have provided the computational foundations for the rapid growth in applications of statistical machine learning in recent years. There is, however, limited theoretical understanding of the relationships between these two kinds of methodology, and limited understanding of relative strengths and weaknesses. Moreover, existing results have been obtained primarily in the setting of convex functions (for optimization) and log-concave functions (for sampling). In this setting, where local properties determine global properties, optimization algorithms are unsurprisingly more efficient computationally than sampling algorithms. We instead examine a class of nonconvex objective functions that arise in mixture modeling and multi-stable systems. In this nonconvex setting, we find that the computational complexity of sampling algorithms scales linearly with the model dimension while that of optimization algorithms scales exponentially.



قيم البحث

اقرأ أيضاً

Adaptive gradient methods have attracted much attention of machine learning communities due to the high efficiency. However their acceleration effect in practice, especially in neural network training, is hard to analyze, theoretically. The huge gap between theoretical convergence results and practical performances prevents further understanding of existing optimizers and the development of more advanced optimization methods. In this paper, we provide adaptive gradient methods a novel analysis with an additional mild assumption, and revise AdaGrad to radagrad for matching a better provable convergence rate. To find an $epsilon$-approximate first-order stationary point in non-convex objectives, we prove random shuffling radagrad achieves a $tilde{O}(T^{-1/2})$ convergence rate, which is significantly improved by factors $tilde{O}(T^{-1/4})$ and $tilde{O}(T^{-1/6})$ compared with existing adaptive gradient methods and random shuffling SGD, respectively. To the best of our knowledge, it is the first time to demonstrate that adaptive gradient methods can deterministically be faster than SGD after finite epochs. Furthermore, we conduct comprehensive experiments to validate the additional mild assumption and the acceleration effect benefited from second moments and random shuffling.
Data-driven modeling increasingly requires to find a Nash equilibrium in multi-player games, e.g. when training GANs. In this paper, we analyse a new extra-gradient method for Nash equilibrium finding, that performs gradient extrapolations and update s on a random subset of players at each iteration. This approach provably exhibits a better rate of convergence than full extra-gradient for non-smooth convex games with noisy gradient oracle. We propose an additional variance reduction mechanism to obtain speed-ups in smooth convex games. Our approach makes extrapolation amenable to massive multiplayer settings, and brings empirical speed-ups, in particular when using a heuristic cyclic sampling scheme. Most importantly, it allows to train faster and better GANs and mixtures of GANs.
We present an algorithm that, with high probability, generates a random spanning tree from an edge-weighted undirected graph in $tilde{O}(n^{4/3}m^{1/2}+n^{2})$ time (The $tilde{O}(cdot)$ notation hides $operatorname{polylog}(n)$ factors). The tree i s sampled from a distribution where the probability of each tree is proportional to the product of its edge weights. This improves upon the previous best algorithm due to Colbourn et al. that runs in matrix multiplication time, $O(n^omega)$. For the special case of unweighted graphs, this improves upon the best previously known running time of $tilde{O}(min{n^{omega},msqrt{n},m^{4/3}})$ for $m gg n^{5/3}$ (Colbourn et al. 96, Kelner-Madry 09, Madry et al. 15). The effective resistance metric is essential to our algorithm, as in the work of Madry et al., but we eschew determinant-based and random walk-based techniques used by previous algorithms. Instead, our algorithm is based on Gaussian elimination, and the fact that effective resistance is preserved in the graph resulting from eliminating a subset of vertices (called a Schur complement). As part of our algorithm, we show how to compute $epsilon$-approximate effective resistances for a set $S$ of vertex pairs via approximate Schur complements in $tilde{O}(m+(n + |S|)epsilon^{-2})$ time, without using the Johnson-Lindenstrauss lemma which requires $tilde{O}( min{(m + |S|)epsilon^{-2}, m+nepsilon^{-4} +|S|epsilon^{-2}})$ time. We combine this approximation procedure with an error correction procedure for handing edges where our estimate isnt sufficiently accurate.
The Expectation Maximization (EM) algorithm is a key reference for inference in latent variable models; unfortunately, its computational cost is prohibitive in the large scale learning setting. In this paper, we propose an extension of the Stochastic Path-Integrated Differential EstimatoR EM (SPIDER-EM) and derive complexity bounds for this novel algorithm, designed to solve smooth nonconvex finite-sum optimization problems. We show that it reaches the same state of the art complexity bounds as SPIDER-EM; and provide conditions for a linear rate of convergence. Numerical results support our findings.
Variational Monte Carlo (VMC) is an approach for computing ground-state wavefunctions that has recently become more powerful due to the introduction of neural network-based wavefunction parametrizations. However, efficiently training neural wavefunct ions to converge to an energy minimum remains a difficult problem. In this work, we analyze optimization and sampling methods used in VMC and introduce alterations to improve their performance. First, based on theoretical convergence analysis in a noiseless setting, we motivate a new optimizer that we call the Rayleigh-Gauss-Newton method, which can improve upon gradient descent and natural gradient descent to achieve superlinear convergence with little added computational cost. Second, in order to realize this favorable comparison in the presence of stochastic noise, we analyze the effect of sampling error on VMC parameter updates and experimentally demonstrate that it can be reduced by the parallel tempering method. In particular, we demonstrate that RGN can be made robust to energy spikes that occur when new regions of configuration space become available to the sampler over the course of optimization. Finally, putting theory into practice, we apply our enhanced optimization and sampling methods to the transverse-field Ising and XXZ models on large lattices, yielding ground-state energy estimates with remarkably high accuracy after just 200-500 parameter updates.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا