ﻻ يوجد ملخص باللغة العربية
It is well known that Universal Cycles of $k$-letter words on an $n$-letter alphabet exist for all $k$ and $n$. In this paper, we prove that Universal Cycles exist for restricted classes of words, including: non-bijections, equitable words (under suitable restrictions), ranked permutations, and passwords.
A connected digraph in which the in-degree of any vertex equals its out-degree is Eulerian, this baseline result is used as the basis of existence proofs for universal cycles (also known as generalized deBruijn cycles or U-cycles) of several combinat
Rabinovitch showed in 1978 that the interval orders having a representation consisting of only closed unit intervals have order dimension at most 3. This article shows that the same dimension bound applies to two other classes of posets: those having
A universal word for a finite alphabet $A$ and some integer $ngeq 1$ is a word over $A$ such that every word in $A^n$ appears exactly once as a subword (cyclically or linearly). It is well-known and easy to prove that universal words exist for any $A
The independence polynomial of a graph is the generating polynomial for the number of independent sets of each size. Two graphs are said to be textit{independence equivalent} if they have equivalent independence polynomials. We extend previous work b
A connected digraph in which the in-degree of any vertex equals its out-degree is Eulerian; this baseline result is used as the basis of existence proofs for universal cycles (also known as ucycles or generalized deBruijn cycles or U-cycles) of sever