ﻻ يوجد ملخص باللغة العربية
In this paper, we introduce the concept of an $m$-order $n$-dimensional generalized Hilbert tensor $mathcal{H}_{n}=(mathcal{H}_{i_{1}i_{2}cdots i_{m}})$, $$ mathcal{H}_{i_{1}i_{2}cdots i_{m}}=frac{1}{i_{1}+i_{2}+cdots i_{m}-m+a}, ain mathbb{R}setminusmathbb{Z}^-; i_{1},i_{2},cdots,i_{m}=1,2,cdots,n, $$ and show that its $H$-spectral radius and its $Z$-spectral radius are smaller than or equal to $M(a)n^{m-1}$ and $M(a)n^{frac{m}{2}}$, respectively, here $M(a)$ is a constant only dependent on $a$. Moreover, both infinite and finite dimensional generalized Hilbert tensors are positive definite for $ageq1$. For an $m$-order infinite dimensional generalized Hilbert tensor $mathcal{H}_{infty}$ with $a>0$, we prove that $mathcal{H}_{infty}$ defines a bounded and positively $(m-1)$-homogeneous operator from $l^{1}$ into $l^{p} (1<p<infty)$. The upper bounds of norm of corresponding positively homogeneous operators are obtained.
In this paper, the $m-$order infinite dimensional Hilbert tensor (hypermatrix) is intrduced to define an $(m-1)$-homogeneous operator on the spaces of analytic functions, which is called Hilbert tensor operator. The boundedness of Hilbert tensor oper
The concepts of P- and P$_0$-matrices are generalized to P- and P$_0$-tensors of even and odd orders via homogeneous formulae. Analog to the matrix case, our P-tensor definition encompasses many important classes of tensors such as the positive defin
In this paper, we introduce the concept of Z$_1$-eigenvalue to infinite dimensional generalized Hilbert tensors (hypermatrix) $mathcal{H}_lambda^{infty}=(mathcal{H}_{i_{1}i_{2}cdots i_{m}})$, $$ mathcal{H}_{i_{1}i_{2}cdots i_{m}}=frac{1}{i_{1}+i_
We reformulate entanglement wedge reconstruction in the language of operator-algebra quantum error correction with infinite-dimensional physical and code Hilbert spaces. Von Neumann algebras are used to characterize observables in a boundary subregio
The thermal equilibrium distribution over quantum-mechanical wave functions is a so-called Gaussian adjusted projected (GAP) measure, $GAP(rho_beta)$, for a thermal density operator $rho_beta$ at inverse temperature $beta$. More generally, $GAP(rho)$