ترغب بنشر مسار تعليمي؟ اضغط هنا

Electronic and optical properties of two-dimensional InSe from a DFT-parameterized tight-binding model

120   0   0.0 ( 0 )
 نشر من قبل Samuel Magorrian
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a tight-binding (TB) model and $mathbf{kcdot p}$ theory for electrons in monolayer and few-layer InSe. The model is constructed from a basis of all $s$ and $p$ valence orbitals on both indium and selenium atoms, with tight-binding parameters obtained from fitting to independently computed density functional theory (DFT) band structures for mono- and bilayer InSe. For the valence and conduction band edges of few-layer InSe, which appear to be in the vicinity of the $Gamma$ point, we calculate the absorption coefficient for the principal optical transitions as a function of the number of layers, $N$. We find a strong dependence on $N$ of the principal optical transition energies, selection rules, and optical oscillation strengths, in agreement with recent observations cite{Bandurin2016}. Also, we find that the conduction band electrons are relatively light ($m propto 0.14-0.18 m_e$), in contrast to an almost flat, and slightly inverted, dispersion of valence band holes near the $Gamma$-point, which is found for up to $N propto 6$.



قيم البحث

اقرأ أيضاً

222 - Xiao Lin , Yang Xu , Shisheng Lin 2012
Optical and electronic properties of two dimensional few layers graphitic silicon carbide (GSiC), in particular monolayer and bilayer, are investigated by density functional theory and found different from that of graphene and silicene. Monolayer GSi C has direct bandgap while few layers exhibit indirect bandgap. The bandgap of monolayer GSiC can be tuned by an in-plane strain. Properties of bilayer GSiC are extremely sensitive to the interlayer distance. These predictions promise that monolayer GSiC could be a remarkable candidate for novel type of light-emitting diodes utilizing its unique optical properties distinct from graphene, silicene and few layers GSiC.
We propose atomic films of n-doped $gamma$-InSe as a platform for intersubband optics in the infrared (IR) and far infrared (FIR) range, coupled to out-of-plane polarized light. Depending on the film thickness (number of layers) of the InSe film thes e transitions span from $sim 0.7$ eV for bilayer to $sim 0.05$ eV for 15-layer InSe. We use a hybrid $mathbf{k} cdot mathbf{p}$ theory and tight-binding model, fully parametrized using density functional theory, to predict their oscillator strengths and thermal linewidths at room temperature.
326 - M. Turek , J. Siewert , J. Fabian 2008
We consider the electronic properties of ferromagnetic bulk GaMnAs at zero temperature using two realistic tight-binding models, one due to Tang and Flatte and one due to Masek. In particular, we study the density of states, the Fermi energy, the inv erse participation ratio, and the optical conductivity with varying impurity concentration x=0.01-0.15. The results are very sensitive to the assumptions made for the on-site and hopping matrix elements of the Mn impurities. For low concentrations, x<0.02, Maseks model shows only small deviations from the case of p-doped GaAs with increased number of holes while within Tang and Flattes model an impurity-band forms. For higher concentrations x, Maseks model shows minor quantitative changes in the properties we studied while the results of the Tang and Flatte model exhibit qualitative changes including strong localization of eigenstates with energies close to the band edge. These differences between the two approaches are in particular visible in the optical conductivity, where Maseks model shows a Drude peak at zero frequency while no such peak is observed in Tang and Flattes model. Interestingly, although the two models differ qualitatively the calculated effective optical masses of both models are similar within the range of 0.4-1.0 of the free electron mass.
Artificial graphene consisting of honeycomb lattices other than the atomic layer of carbon has been shown to exhibit electronic properties similar to real graphene. Here, we reverse the argument to show that transport properties of real graphene can be captured by simulations using theoretical artificial graphene. To prove this, we first derive a simple condition, along with its restrictions, to achieve band structure invariance for a scalable graphene lattice. We then present transport measurements for an ultraclean suspended single-layer graphene pn junction device, where ballistic transport features from complex Fabry-Perot interference (at zero magnetic field) to the quantum Hall effect (at unusually low field) are observed and are well reproduced by transport simulations based on properly scaled single-particle tight-binding models. Our findings indicate that transport simulations for graphene can be efficiently performed with a strongly reduced number of atomic sites, allowing for reliable predictions for electric properties of complex graphene devices. We demonstrate the capability of the model by applying it to predict so-far unexplored gate-defined conductance quantization in single-layer graphene.
Few-layer InSe draws tremendous research interests owing to the superior electronic and optical properties. It exhibits high carrier mobility up to more than 1000 cm2/Vs at room temperature. The strongly layer-tunable band gap spans a large spectral range from near-infrared to the visible. In this perspective, we systematically review the optical properties of few-layer InSe. Firstly, the intrinsic optical and electronic properties are introduced. Compared to other two-dimensional (2D) materials, the light-matter interaction of few-layer InSe is unusual. The band gap transition is inactive or extremely weak for in-plane polarized light, and the emission light is mainly polarized along the out-of-plane direction. Secondly, we will present several schemes to tune the optical properties of few-layer InSe such as external strain, surface chemical doping and van der Waals (vdW) interfacing. Thirdly, we survey the applications of few-layer InSe in photodetection and heterostructures. Overall, few-layer InSe exhibits great potential not only in fundamental research, but also in electronic and optoelectronic applications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا