ﻻ يوجد ملخص باللغة العربية
Artificial graphene consisting of honeycomb lattices other than the atomic layer of carbon has been shown to exhibit electronic properties similar to real graphene. Here, we reverse the argument to show that transport properties of real graphene can be captured by simulations using theoretical artificial graphene. To prove this, we first derive a simple condition, along with its restrictions, to achieve band structure invariance for a scalable graphene lattice. We then present transport measurements for an ultraclean suspended single-layer graphene pn junction device, where ballistic transport features from complex Fabry-Perot interference (at zero magnetic field) to the quantum Hall effect (at unusually low field) are observed and are well reproduced by transport simulations based on properly scaled single-particle tight-binding models. Our findings indicate that transport simulations for graphene can be efficiently performed with a strongly reduced number of atomic sites, allowing for reliable predictions for electric properties of complex graphene devices. We demonstrate the capability of the model by applying it to predict so-far unexplored gate-defined conductance quantization in single-layer graphene.
In this work we present a tight-binding model that allows to describe with a minimal amount of parameters the band structure of exciton-polariton lattices. This model based on $s$ and $p$ non-orthogonal photonic orbitals faithfully reproduces experim
Experiments on hexagonal graphene-like structures using microwave measuring techniques are presented. The lowest transverse-electric resonance of coupled dielectric disks sandwiched between two metallic plates establishes a tight-binding configuratio
Graphene has proven to host outstanding mesoscopic effects involving massless Dirac quasiparticles travelling ballistically resulting in the current flow exhibiting light-like behaviour. A new branch of 2D electronics inspired by the standard princip
We present the symmetry labelling of all electron bands in graphene obtained by combining numerical band calculations and analytical analysis based on group theory. The latter was performed both in the framework of the (nearly) free electron model, o
We propose atomic films of n-doped $gamma$-InSe as a platform for intersubband optics in the infrared (IR) and far infrared (FIR) range, coupled to out-of-plane polarized light. Depending on the film thickness (number of layers) of the InSe film thes