ﻻ يوجد ملخص باللغة العربية
Optical and electronic properties of two dimensional few layers graphitic silicon carbide (GSiC), in particular monolayer and bilayer, are investigated by density functional theory and found different from that of graphene and silicene. Monolayer GSiC has direct bandgap while few layers exhibit indirect bandgap. The bandgap of monolayer GSiC can be tuned by an in-plane strain. Properties of bilayer GSiC are extremely sensitive to the interlayer distance. These predictions promise that monolayer GSiC could be a remarkable candidate for novel type of light-emitting diodes utilizing its unique optical properties distinct from graphene, silicene and few layers GSiC.
We discuss the fine structure and spin dynamics of spin-3/2 centers associated with silicon vacancies in silicon carbide. The centers have optically addressable spin states which makes them highly promising for quantum technologies. The fine structur
A systematic review is made for the AA-, AB- and ABC-stacked graphites. The generalized tight-binding model, accompanied with the effective-mass approximation and the Kubo formula, is developed to investigate electronic and optical properties in the
We present a tight-binding (TB) model and $mathbf{kcdot p}$ theory for electrons in monolayer and few-layer InSe. The model is constructed from a basis of all $s$ and $p$ valence orbitals on both indium and selenium atoms, with tight-binding paramete
In this paper we review the theory of silicon nanowires. We focus on nanowires with diameters below 10 nm, where quantum effects become important and the properties diverge significantly from those of bulk silicon. These wires can be efficiently trea
We present first-principles calculations of silicene/graphene and germanene/graphene bilayers. Various supercell models are constructed in the calculations in order to reduce the strain of the lattice-mismatched bilayer systems. Our energetics analys