ترغب بنشر مسار تعليمي؟ اضغط هنا

Bringing Trimmed Serendipity Methods to Computational Practice in Firedrake

65   0   0.0 ( 0 )
 نشر من قبل Justin Crum
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We present an implementation of the trimmed serendipity finite element family, using the open source finite element package Firedrake. The new elements can be used seamlessly within the software suite for problems requiring $H^1$, hcurl, or hdiv-conforming elements on meshes of squares or cubes. To test how well trimmed serendipity elements perform in comparison to traditional tensor product elements, we perform a sequence of numerical experiments including the primal Poisson, mixed Poisson, and Maxwell cavity eigenvalue problems. Overall, we find that the trimmed serendipity elements converge, as expected, at the same rate as the respective tensor product elements while being able to offer significant savings in the time or memory required to solve certain problems.



قيم البحث

اقرأ أيضاً

We study the use of Krylov subspace recycling for the solution of a sequence of slowly-changing families of linear systems, where each family consists of shifted linear systems that differ in the coefficient matrix only by multiples of the identity. Our aim is to explore the simultaneous solution of each family of shifted systems within the framework of subspace recycling, using one augmented subspace to extract candidate solutions for all the shifted systems. The ideal method would use the same augmented subspace for all systems and have fixed storage requirements, independent of the number of shifted systems per family. We show that a method satisfying both requirements cannot exist in this framework. As an alternative, we introduce two schemes. One constructs a separate deflation space for each shifted system but solves each family of shifted systems simultaneously. The other builds only one recycled subspace and constructs approximate corrections to the solutions of the shifted systems at each cycle of the iterative linear solver while only minimizing the base system residual. At convergence of the base system solution, we apply the method recursively to the remaining unconverged systems. We present numerical examples involving systems arising in lattice quantum chromodynamics.
In this paper we propose an accurate, highly parallel algorithm for the generalized eigendecomposition of a matrix pair $(H, S)$, given in a factored form $(F^{ast} J F, G^{ast} G)$. Matrices $H$ and $S$ are generally complex and Hermitian, and $S$ i s positive definite. This type of matrices emerges from the representation of the Hamiltonian of a quantum mechanical system in terms of an overcomplete set of basis functions. This expansion is part of a class of models within the broad field of Density Functional Theory, which is considered the golden standard in condensed matter physics. The overall algorithm consists of four phases, the second and the fourth being optional, where the two last phases are computation of the generalized hyperbolic SVD of a complex matrix pair $(F,G)$, according to a given matrix $J$ defining the hyperbolic scalar product. If $J = I$, then these two phases compute the GSVD in parallel very accurately and efficiently.
We present a parallel hierarchical solver for general sparse linear systems on distributed-memory machines. For large-scale problems, this fully algebraic algorithm is faster and more memory-efficient than sparse direct solvers because it exploits th e low-rank structure of fill-in blocks. Depending on the accuracy of low-rank approximations, the hierarchical solver can be used either as a direct solver or as a preconditioner. The parallel algorithm is based on data decomposition and requires only local communication for updating boundary data on every processor. Moreover, the computation-to-communication ratio of the parallel algorithm is approximately the volume-to-surface-area ratio of the subdomain owned by every processor. We present various numerical results to demonstrate the versatility and scalability of the parallel algorithm.
We introduce a randomized algorithm, namely RCHOL, to construct an approximate Cholesky factorization for a given Laplacian matrix (a.k.a., graph Laplacian). From a graph perspective, the exact Cholesky factorization introduces a clique in the underl ying graph after eliminating a row/column. By randomization, RCHOL only retains a sparse subset of the edges in the clique using a random sampling developed by Spielman and Kyng. We prove RCHOL is breakdown-free and apply it to solving large sparse linear systems with symmetric diagonally dominant matrices. In addition, we parallelize RCHOL based on the nested dissection ordering for shared-memory machines. We report numerical experiments that demonstrate the robustness and the scalability of RCHOL. For example, our parallel code scaled up to 64 threads on a single node for solving the 3D Poisson equation, discretized with the 7-point stencil on a $1024times 1024 times 1024$ grid, a problem that has one billion unknowns.
Support for lower precision computation is becoming more common in accelerator hardware due to lower power usage, reduced data movement and increased computational performance. However, computational science and engineering (CSE) problems require dou ble precision accuracy in several domains. This conflict between hardware trends and application needs has resulted in a need for multiprecision strategies at the linear algebra algorithms level if we want to exploit the hardware to its full potential while meeting the accuracy requirements. In this paper, we focus on preconditioned sparse iterative linear solvers, a key kernel in several CSE applications. We present a study of multiprecision strategies for accelerating this kernel on GPUs. We seek the best methods for incorporating multiple precisions into the GMRES linear solver; these include iterative refinement and parallelizable preconditioners. Our work presents strategies to determine when multiprecision GMRES will be effective and to choose parameters for a multiprecision iterative refinement solver to achieve better performance. We use an implementation that is based on the Trilinos library and employs Kokkos Kernels for performance portability of linear algebra kernels. Performance results demonstrate the promise of multiprecision approaches and demonstrate even further improvements are possible by optimizing low-level kernels.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا