ﻻ يوجد ملخص باللغة العربية
In this paper, joint asymptotics of powered maxima for a triangular array of bivariate powered Gaussian random vectors are considered. Under the Husler-Reiss condition, limiting distributions of powered maxima are derived. Furthermore, the second-order expansions of the joint distributions of powered maxima are established under the refined Husler-Reiss condition.
We derive exact asymptotics of $$mathbb{P}left(sup_{tin mathcal{A}}X(t)>uright), ~text{as}~ utoinfty,$$ for a centered Gaussian field $X(t),~tin mathcal{A}subsetmathbb{R}^n$, $n>1$ with continuous sample paths a.s. and general dependence structure, f
In this paper, we study a random field constructed from the two-dimensional Gaussian free field (GFF) by modifying the variance along the scales in the neighborhood of each point. The construction can be seen as a local martingale transform and is ak
In this paper, joint limit distributions of maxima and minima on independent and non-identically distributed bivariate Gaussian triangular arrays is derived as the correlation coefficient of $i$th vector of given $n$th row is the function of $i/n$. F
This paper considers the asymptotic distribution of the longest edge of the minimal spanning tree and nearest neighbor graph on X_1,...,X_{N_n} where X_1,X_2,... are i.i.d. in Re^2 with distribution F and N_n is independent of the X_i and satisfies N
Consider a $n times n$ matrix from the Gaussian Unitary Ensemble (GUE). Given a finite collection of bounded disjoint real Borel sets $(Delta_{i,n}, 1leq ileq p)$, properly rescaled, and eventually included in any neighbourhood of the support of Wign