ﻻ يوجد ملخص باللغة العربية
Consider a $n times n$ matrix from the Gaussian Unitary Ensemble (GUE). Given a finite collection of bounded disjoint real Borel sets $(Delta_{i,n}, 1leq ileq p)$, properly rescaled, and eventually included in any neighbourhood of the support of Wigners semi-circle law, we prove that the related counting measures $({mathcal N}_n(Delta_{i,n}), 1leq ileq p)$, where ${mathcal N}_n(Delta)$ represents the number of eigenvalues within $Delta$, are asymptotically independent as the size $n$ goes to infinity, $p$ being fixed. As a consequence, we prove that the largest and smallest eigenvalues, properly centered and rescaled, are asymptotically independent; we finally describe the fluctuations of the condition number of a matrix from the GUE.
We study stochastic perturbations of ODE with stable limit cycles -- referred to as stochastic oscillators -- and investigate the response of the asymptotic (in time) frequency of oscillations to changing noise amplitude. Unlike previous studies, we
In this paper we study a certain recurrence relation, that can be used to generate ladder operators for the Laguerre Unitary ensemble, from the point of view of Sakais geometric theory of Painleve equations. On one hand, this gives us one more detail
We demonstrate that the (s-wave) geometric spectrum of the Efimov energy levels in the unitary limit is generated by the radial motion of a primitive periodic orbit (and its harmonics) of the corresponding classical system. The action of the primitiv
Let $sqrt{N}+lambda_{max}$ be the largest real eigenvalue of a random $Ntimes N$ matrix with independent $N(0,1)$ entries (the `real Ginibre matrix). We study the large deviations behaviour of the limiting $Nrightarrow infty$ distribution $P[lambda_{
We prove rates of convergence for the circular law for the complex Ginibre ensemble. Specifically, we bound the expected $L_p$-Wasserstein distance between the empirical spectral measure of the normalized complex Ginibre ensemble and the uniform meas