ﻻ يوجد ملخص باللغة العربية
We derive exact asymptotics of $$mathbb{P}left(sup_{tin mathcal{A}}X(t)>uright), ~text{as}~ utoinfty,$$ for a centered Gaussian field $X(t),~tin mathcal{A}subsetmathbb{R}^n$, $n>1$ with continuous sample paths a.s. and general dependence structure, for which $arg max_{tin {mathcal{A}}} Var(X(t))$ is a Jordan set with finite and positive Lebesque measure of dimension $kleq n$. Our findings are applied to deriving the asymptotics of tail probabilities related to performance tables and dependent chi processes.
In this paper we will consider the problem of the numerical simulation of non-Gaussian, scalar random fields with a prescribed correlation structure provided either by a theoretical model or computed on a set of observational data. Although, the nume
This paper is concerned with the existence of multiple points of Gaussian random fields. Under the framework of Dalang et al. (2017), we prove that, for a wide class of Gaussian random fields, multiple points do not exist in critical dimensions. The
Two types of Gaussian processes, namely the Gaussian field with generalized Cauchy covariance (GFGCC) and the Gaussian sheet with generalized Cauchy covariance (GSGCC) are considered. Some of the basic properties and the asymptotic properties of the
In this paper, joint asymptotics of powered maxima for a triangular array of bivariate powered Gaussian random vectors are considered. Under the Husler-Reiss condition, limiting distributions of powered maxima are derived. Furthermore, the second-ord
The tube method or the volume-of-tube method approximates the tail probability of the maximum of a smooth Gaussian random field with zero mean and unit variance. This method evaluates the volume of a spherical tube about the index set, and then trans