ﻻ يوجد ملخص باللغة العربية
We have studied the collective motion of polar active particles confined to ellipsoidal surfaces. The geometric constraints lead to the formation of vortices that encircle surface points of constant curvature (umbilics). We have found that collective motion patterns are particularly rich on ellipsoids, with four umbilics where vortices tend to be located near pairs of umbilical points to minimize their interaction energy. Our results provide a new perspective on the migration of living cells, which most likely use the information provided from the curved substrate geometry to guide their collective motion.
We investigate the influence of curvature and topology on crystalline wrinkling patterns in generic elastic bilayers. Our numerical analysis predicts that the total number of defects created by adiabatic compression exhibits universal quadratic scali
Shells, when confined, can deform in a broad assortment of shapes and patterns, often quite dissimilar to what is produced by their flat counterparts (plates). In this work we discuss the morphological landscape of shells deposited on a fluid substra
Using cyclic shear to drive a two dimensional granular system, we determine the structural characteristics for different inter-particle friction coefficients. These characteristics are the result of a competition between mechanical stability and entr
We use numerical simulations to study the motion of a large asymmetric tracer immersed in a low density suspension of self-propelled nanoparticles in two dimensions. Specifically, we analyze how the curvature of the tracer affects its translational a
Odd viscosity arises in systems with time reversal symmetry breaking, which creates non-dissipative effects. One method to probe changes in viscosity is to examine the dynamics of a single probe particle driven though a medium, a technique known as a