ﻻ يوجد ملخص باللغة العربية
Shells, when confined, can deform in a broad assortment of shapes and patterns, often quite dissimilar to what is produced by their flat counterparts (plates). In this work we discuss the morphological landscape of shells deposited on a fluid substrate. Floating shells spontaneously buckle to accommodate the natural excess of projected area and, depending on their intrinsic properties, structured wrinkling configurations emerge. We examine the mechanics of these instabilities and provide a theoretical framework to link the geometry of the shell with a space-dependent confinement. Finally, we discuss the potential of harnessing geometry and intrinsic curvature as new tools for controlled fabrication of patterns on thin surfaces.
We present in this paper a detailed analysis of the flexoelectric instability of a planar nematic layer in the presence of an alternating electric field (frequency $omega$), which leads to stripe patterns (flexodomains) in the plane of the layer. Thi
Protein pattern formation is essential for the spatial organization of many intracellular processes like cell division, flagellum positioning, and chemotaxis. A prominent example of intracellular patterns are the oscillatory pole-to-pole oscillations
Predicting the large-amplitude deformations of thin elastic sheets is difficult due to the complications of self-contact, geometric nonlinearities, and a multitude of low-lying energy states. We study a simple two-dimensional setting where an annular
We have studied the collective motion of polar active particles confined to ellipsoidal surfaces. The geometric constraints lead to the formation of vortices that encircle surface points of constant curvature (umbilics). We have found that collective
Within the framework of continuum theory, we draw a parallel between ferromagnetic materials and nematic liquid crystals confined on curved surfaces, which are both characterized by local interaction and anchoring potentials. We show that the extrins