ترغب بنشر مسار تعليمي؟ اضغط هنا

Friction-controlled entropy-stability competition in granular systems

79   0   0.0 ( 0 )
 نشر من قبل Xulai Sun
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Using cyclic shear to drive a two dimensional granular system, we determine the structural characteristics for different inter-particle friction coefficients. These characteristics are the result of a competition between mechanical stability and entropy, with the latters effect increasing with friction. We show that a parameter-free maximum-entropy argument alone predicts an exponential cell order distribution, with excellent agreement with the experimental observation. We show that friction only tunes the mean cell order and, consequently, the exponential decay rate and the packing fraction. We further show that cells, which can be very large in such systems, are short-lived, implying that our systems are liquid-like rather than glassy.



قيم البحث

اقرأ أيضاً

The interplay between Coulomb friction and random excitations is studied experimentally by means of a rotating probe in contact with a stationary granular gas. The granular material is independently fluidized by a vertical shaker, acting as a heat ba th for the Brownian-like motion of the probe. Two ball bearings supporting the probe exert nonlinear Coulomb friction upon it. The experimental velocity distribution of the probe, autocorrelation function, and power spectra are compared with the predictions of a linear Boltzmann equation with friction, which is known to simplify in two opposite limits: at high collision frequency, it is mapped to a Fokker-Planck equation with nonlinear friction, whereas at low collision frequency, it is described by a sequence of independent random kicks followed by friction-induced relaxations. Comparison between theory and experiment in these two limits shows good agreement. Deviations are observed at very small velocities, where the real bearings are not well modeled by Coulomb friction.
The way granular materials response to an applied shear stress is of the utmost relevance to both human activities and natural environment. One of the their most intriguing and less understood behavior, is the stick-instability, whose most dramatic m anifestation are earthquakes, ultimately governed by the dynamics of rocks and debris jammed within the fault gauge. Many of the features of earthquakes, i.e. intermittency, broad times and energy scale involved, are mimicked by a very simple experimental set-up, where small beads of glass under load are slowly sheared by an elastic medium. Analyzing data from long lasting experiments, we identify a critical dynamical regime, that can be related to known theoretical models used for crackling-noise phenomena. In particular, we focus on the average shape of the slip velocity, observing a breakdown of scaling: while small slips show a self-similar shape, large does not, in a way that suggests the presence of subtle inertial effects within the granular system. In order to characterise the crossover between the two regimes, we investigate the frictional response of the system, which we trat as a stochastic quantity. Computing different averages, we evidence a weakening effect, whose Stribeck threshold velocity can be related to the aforementioned breaking of scaling.
We experimentally investigate the fluidization of a granular material subject to mechanical vibrations by monitoring the angular velocity of a vane suspended in the medium and driven by an external motor. On increasing the frequency we observe a re-e ntrant transition, as a jammed system first enters a fluidized state, where the vane rotates with high constant velocity, and then returns to a frictional state, where the vane velocity is much lower. While the fluidization frequency is material independent, the viscosity recovery frequency shows a clear dependence on the material, that we rationalize by relating this frequency to the balance between dissipative and inertial forces in the system. Molecular dynamics simulations well reproduce the experimental data, confirming the suggested theoretical picture.
The similarity in mechanical properties of dense active matter and sheared amorphous solids has been noted in recent years without a rigorous examination of the underlying mechanism. We develop a mean-field model that predicts that their critical beh avior should be equivalent in infinite dimensions, up to a rescaling factor that depends on the correlation length of the applied field. We test these predictions in 2d using a new numerical protocol, termed `athermal quasi-static random displacement, and find that these mean-field predictions are surprisingly accurate in low dimensions. We identify a general class of perturbations that smoothly interpolate between the uncorrelated localized forces that occur in the high-persistence limit of dense active matter, and system-spanning correlated displacements that occur under applied shear. These results suggest a universal framework for predicting flow, deformation, and failure in active and sheared disordered materials.
Conditions for the stability under linear perturbations around the homogeneous cooling state are studied for dilute granular gases of inelastic and rough hard disks or spheres with constant coefficients of normal ($alpha$) and tangential ($beta$) res titution. After a formally exact linear stability analysis of the Navier--Stokes--Fourier hydrodynamic equations in terms of the translational ($d_t$) and rotational ($d_r$) degrees of freedom, the transport coefficients derived in the companion paper [A. Megias and A. Santos, Hydrodynamics of granular gases of inelastic and rough hard disks or spheres. I. Transport coefficients, Phys. Rev. E 104, 034901 (2021)] are employed. Known results for hard spheres [V. Garzo, A. Santos, and G. M. Kremer, Phys. Rev. E 97, 052901 (2018)] are recovered by setting $d_t=d_r=3$, while novel results for hard disks ($d_t=2$, $d_r=1$) are obtained. In the latter case, a high-inelasticity peculiar region in the $(alpha,beta)$ parameter space is found, inside which the critical wave number associated with the longitudinal modes diverges. Comparison with event-driven molecular dynamics simulations for dilute systems of hard disks at $alpha=0.2$ shows that this theoretical region of absolute instability may be an artifact of the extrapolation to high inelasticity of the approximations made in the derivation of the transport coefficients, although it signals a shrinking of the conditions for stability. In the case of moderate inelasticity ($alpha=0.7$), however, a good agreement between the theoretical predictions and the simulation results is found.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا