ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum frequency conversion between infrared and ultraviolet

82   0   0.0 ( 0 )
 نشر من قبل Helge R\\\"utz
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on the implementation of quantum frequency conversion (QFC) between infrared (IR) and ultraviolet (UV) wavelengths by using single-stage upconversion in a periodically poled KTP waveguide. Due to the monolithic waveguide design, we manage to transfer a telecommunication band input photon to the wavelength of the ionic dipole transition of Yb${}^{+}$ at 369.5 nm. The external (internal) conversion efficiency is around 5% (10%). The high energy pump used in this converter introduces a spontaneous parametric downconversion (SPDC) process, which is a cause for noise in the UV mode. Using this SPDC process, we show that the converter preserves non-classical correlations in the upconversion process, rendering this miniaturized interface a source for quantum states of light in the UV.



قيم البحث

اقرأ أيضاً

119 - Yu Ding , Z. Y. Ou 2010
By using parametric down-conversion process with a strong signal field injection, we demonstrate coherent frequency down-conversion from a pump photon to an idler photon. Contrary to a common misunderstanding, we show that the process can be free of quantum noise. With an interference experiment, we demonstrate that the coherence is preserved in the conversion process. This may lead to a high fidelity quantum state transfer from high frequency photon to low frequency photon and connects a missing link in a quantum network. With this scheme of coherent frequency down-conversion of photons, we propose a method of single-photon wavelength division multiplexing.
In superconducting quantum information, machined aluminum superconducting cavities have proven to be a well-controlled, low-dissipation electromagnetic environment for quantum circuits such as qubits. They can possess large internal quality factors, $Q_{int}>10^8$, and present the possibility of storing quantum information for times far exceeding those of microfabricated circuits. However, in order to be useful as a storage element, these cavities require a fast read/write mechanism--- in other words, they require tunable coupling between other systems of interest such as other cavity modes and qubits, as well as any associated readout hardware. In this work, we demonstrate these qualities in a simple dual cavity architecture in which a low-Q readout mode is parametrically coupled to a high-Q storage mode, allowing us to store and retrieve classical information. Specifically, we employ a flux-driven Josephson junction-based coupling scheme to controllably swap coherent states between two cavities, demonstrating full, sequenced control over the coupling rates between modes.
The gluon spin coupling to a Gaussian correlated background gauge field induces an effective tachyonic gluon mass. It is momentum dependent and vanishes in the UV only like 1/p^2. In the IR, we obtain stabilization through a positive m^2_{conf}(p^2) related to confinement. Recently a purely phenomenological tachyonic gluon mass was used to explain the linear rise in the qbar q static potential at small distances and also some long standing discrepancies found in QCD sum rules. We show that the stochastic vacuum model of QCD predicts a gluon mass with the desired properties.
We report the observation of efficient and low-noise frequency conversion between two microwave modes, mediated by the motion of a mechanical resonator subjected to radiation pressure. We achieve coherent conversion of more than $10^{12}~mathrm{photo ns/s}$ with a $95mathrm{%}$ efficiency and a $14~mathrm{kHz}$ bandwidth. With less than $10^{-1}~mathrm{photons cdot s^{-1}cdot Hz^{-1}}$ of added noise, this optomechanical frequency converter is suitable for quantum state transduction. We show the ability to operate this converter as a tunable beam splitter, with direct applications for photon routing and communication through complex quantum networks.
A novel single-photon Mach-Zehnder interferometer terminated at two different frequencies realizes the nonlinear frequency conversion of optical quantum superposition states. The information-preserving character of the relevant unitary transformation has been experimentally demonstrated for input qubits and ebits. Besides its own intrinsic fundamental interest, the new scheme will find important applications in modern quantum information technology.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا