ﻻ يوجد ملخص باللغة العربية
The gluon spin coupling to a Gaussian correlated background gauge field induces an effective tachyonic gluon mass. It is momentum dependent and vanishes in the UV only like 1/p^2. In the IR, we obtain stabilization through a positive m^2_{conf}(p^2) related to confinement. Recently a purely phenomenological tachyonic gluon mass was used to explain the linear rise in the qbar q static potential at small distances and also some long standing discrepancies found in QCD sum rules. We show that the stochastic vacuum model of QCD predicts a gluon mass with the desired properties.
We report on the implementation of quantum frequency conversion (QFC) between infrared (IR) and ultraviolet (UV) wavelengths by using single-stage upconversion in a periodically poled KTP waveguide. Due to the monolithic waveguide design, we manage t
It is shown that the hypothesis of tachyonic neutrinos leads to the same oscillations effect as if they were usual massive particles. Therefore, the experimental evidence of neutrino oscillations does not distinguish between massive and tachyonic neutrinos.
We derive the form of the infrared gluon propagator by proving a mapping in the infrared of the quantum Yang-Mills and $lambdaphi^4$ theories. The equivalence is complete at a classical level. But while at a quantum level, the correspondence is spoil
We investigate a connection between a renormalon ambiguity of heavy quark mass and the gluon condensate contribution into the quark dispersion law related with a virtuality defining a displacement of the heavy quark from the perturbative mass-shell, which happens inside a hadron.
We present a pedagogical overview of the nonperturbative mechanism that endows gluons with a dynamical mass. This analysis is performed based on pure Yang-Mills theories in the Landau gauge, within the theoretical framework that emerges from the comb