ﻻ يوجد ملخص باللغة العربية
We report the observation of efficient and low-noise frequency conversion between two microwave modes, mediated by the motion of a mechanical resonator subjected to radiation pressure. We achieve coherent conversion of more than $10^{12}~mathrm{photons/s}$ with a $95mathrm{%}$ efficiency and a $14~mathrm{kHz}$ bandwidth. With less than $10^{-1}~mathrm{photons cdot s^{-1}cdot Hz^{-1}}$ of added noise, this optomechanical frequency converter is suitable for quantum state transduction. We show the ability to operate this converter as a tunable beam splitter, with direct applications for photon routing and communication through complex quantum networks.
Microelectromechanical systems and integrated photonics provide the basis for many reliable and compact circuit elements in modern communication systems. Electro-opto-mechanical devices are currently one of the leading approaches to realize ultra-sen
Fiber optic communication is the backbone of our modern information society, offering high bandwidth, low loss, weight, size and cost, as well as an immunity to electromagnetic interference. Microwave photonics lends these advantages to electronic se
Using different configurations of applied strong driving and weak probe fields, we find that only a single three-level superconducting quantum circuit (SQC) is enough to realize amplification, attenuation and frequency conversion of microwave fields.
By using parametric down-conversion process with a strong signal field injection, we demonstrate coherent frequency down-conversion from a pump photon to an idler photon. Contrary to a common misunderstanding, we show that the process can be free of
We report on the implementation of quantum frequency conversion (QFC) between infrared (IR) and ultraviolet (UV) wavelengths by using single-stage upconversion in a periodically poled KTP waveguide. Due to the monolithic waveguide design, we manage t