ﻻ يوجد ملخص باللغة العربية
A balanced pair in an ordered set $P=(V,leq)$ is a pair $(x,y)$ of elements of $V$ such that the proportion of linear extensions of $P$ that put $x$ before $y$ is in the real interval $[1/3, 2/3]$. We define the notion of a good pair and claim any ordered set that has a good pair will satisfy the conjecture and furthermore every ordered set which is not totally ordered and has a forest as its cover graph has a good pair.
The 1-2-3 Conjecture, posed by Karo{n}ski, {L}uczak and Thomason, asked whether every connected graph $G$ different from $K_2$ can be 3-edge-weighted so that every two adjacent vertices of $G$ get distinct sums of incident weights. The 1-2 Conjecture
A graph is said to be a cover graph if it is the underlying graph of the Hasse diagram of a finite partially ordered set. The direct product G X H of graphs G and H is the graph having vertex set V(G) X V(H) and edge set E(G X H) = {(g_i,h_s)(g_j,h_t
In 1972, Tutte posed the $3$-Flow Conjecture: that all $4$-edge-connected graphs have a nowhere zero $3$-flow. This was extended by Jaeger et al.(1992) to allow vertices to have a prescribed, possibly non-zero difference (modulo $3$) between the infl
A ${00,01,10,11}$-valued function on the vertices of the $n$-cube is called a $t$-resilient $(n,2)$-function if it has the same number of $00$s, $01$s, $10$s and $11$s among the vertices of every subcube of dimension $t$. The Friedman and Fon-Der-Fla
A conjecture of Graver from 1991 states that the generic $3$-dimensional rigidity matroid is the unique maximal abstract $3$-rigidity matroid with respect to the weak order on matroids. Based on a close similarity between the generic $d$-dimensional