ﻻ يوجد ملخص باللغة العربية
The 1-2-3 Conjecture, posed by Karo{n}ski, {L}uczak and Thomason, asked whether every connected graph $G$ different from $K_2$ can be 3-edge-weighted so that every two adjacent vertices of $G$ get distinct sums of incident weights. The 1-2 Conjecture states that if vertices also receive colors and the vertex color is added to the sum of its incident edges, then adjacent vertices can be distinguished using only ${ 1,2}$. In this paper we confirm 1-2 Conjecture for 3-regular graphs. Meanwhile, we show that every 3-regular graph can achieve a neighbor sum distinguishing edge coloring by using 4 colors, which answers 1-2-3 Conjecture positively.
A graph is $ell$-reconstructible if it is determined by its multiset of induced subgraphs obtained by deleting $ell$ vertices. We prove that $3$-regular graphs are $2$-reconstructible.
Let $Oct_{1}^{+}$ and $Oct_{2}^{+}$ be the planar and non-planar graphs that obtained from the Octahedron by 3-splitting a vertex respectively. For $Oct_{1}^{+}$, we prove that a 4-connected graph is $Oct_{1}^{+}$-free if and only if it is $C_{6}^{2}
A ${00,01,10,11}$-valued function on the vertices of the $n$-cube is called a $t$-resilient $(n,2)$-function if it has the same number of $00$s, $01$s, $10$s and $11$s among the vertices of every subcube of dimension $t$. The Friedman and Fon-Der-Fla
A balanced pair in an ordered set $P=(V,leq)$ is a pair $(x,y)$ of elements of $V$ such that the proportion of linear extensions of $P$ that put $x$ before $y$ is in the real interval $[1/3, 2/3]$. We define the notion of a good pair and claim any or
A graph $G$ is total weight $(k,k)$-choosable if for any total list assignment $L$ which assigns to each vertex $v$ a set $L(v)$ of $k$ real numbers, and each edge $e$ a set $L(e)$ of $k$ real numbers, there is a proper total $L$-weighting, i.e., a m