ترغب بنشر مسار تعليمي؟ اضغط هنا

A note on 1-2-3 and 1-2 Conjectures for 3-regular graphs

123   0   0.0 ( 0 )
 نشر من قبل Chao Yang
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The 1-2-3 Conjecture, posed by Karo{n}ski, {L}uczak and Thomason, asked whether every connected graph $G$ different from $K_2$ can be 3-edge-weighted so that every two adjacent vertices of $G$ get distinct sums of incident weights. The 1-2 Conjecture states that if vertices also receive colors and the vertex color is added to the sum of its incident edges, then adjacent vertices can be distinguished using only ${ 1,2}$. In this paper we confirm 1-2 Conjecture for 3-regular graphs. Meanwhile, we show that every 3-regular graph can achieve a neighbor sum distinguishing edge coloring by using 4 colors, which answers 1-2-3 Conjecture positively.



قيم البحث

اقرأ أيضاً

A graph is $ell$-reconstructible if it is determined by its multiset of induced subgraphs obtained by deleting $ell$ vertices. We prove that $3$-regular graphs are $2$-reconstructible.
Let $Oct_{1}^{+}$ and $Oct_{2}^{+}$ be the planar and non-planar graphs that obtained from the Octahedron by 3-splitting a vertex respectively. For $Oct_{1}^{+}$, we prove that a 4-connected graph is $Oct_{1}^{+}$-free if and only if it is $C_{6}^{2} $, $C_{2k+1}^{2}$ $(k geq 2)$ or it is obtained from $C_{5}^{2}$ by repeatedly 4-splitting vertices. We also show that a planar graph is $Oct_{1}^{+}$-free if and only if it is constructed by repeatedly taking 0-, 1-, 2-sums starting from ${K_{1}, K_{2} ,K_{3}} cup mathscr{K} cup {Oct,L_{5} }$, where $mathscr{K}$ is the set of graphs obtained by repeatedly taking the special 3-sums of $K_{4}$. For $Oct_{2}^{+}$, we prove that a 4-connected graph is $Oct_{2}^{+}$-free if and only if it is planar, $C_{2k+1}^{2}$ $(k geq 2)$, $L(K_{3,3})$ or it is obtained from $C_{5}^{2}$ by repeatedly 4-splitting vertices.
177 - Denis S. Krotov 2019
A ${00,01,10,11}$-valued function on the vertices of the $n$-cube is called a $t$-resilient $(n,2)$-function if it has the same number of $00$s, $01$s, $10$s and $11$s among the vertices of every subcube of dimension $t$. The Friedman and Fon-Der-Fla ass bounds on the correlation immunity order say that such a function must satisfy $tle 2n/3-1$; moreover, the $(2n/3-1)$-resilient $(n,2)$-functions correspond to the equitable partitions of the $n$-cube with the quotient matrix $[[0,r,r,r],[r,0,r,r],[r,r,0,r],[r,r,r,0]]$, $r=n/3$. We suggest constructions of such functions and corresponding partitions, show connections with Latin hypercubes and binary $1$-perfect codes, characterize the non-full-rank and the reducible functions from the considered class, and discuss the possibility to make a complete characterization of the class.
151 - Imed Zaguia 2016
A balanced pair in an ordered set $P=(V,leq)$ is a pair $(x,y)$ of elements of $V$ such that the proportion of linear extensions of $P$ that put $x$ before $y$ is in the real interval $[1/3, 2/3]$. We define the notion of a good pair and claim any or dered set that has a good pair will satisfy the conjecture and furthermore every ordered set which is not totally ordered and has a forest as its cover graph has a good pair.
106 - Huajing Lu , Xuding Zhu 2021
A graph $G$ is total weight $(k,k)$-choosable if for any total list assignment $L$ which assigns to each vertex $v$ a set $L(v)$ of $k$ real numbers, and each edge $e$ a set $L(e)$ of $k$ real numbers, there is a proper total $L$-weighting, i.e., a m apping $f: V(G) cup E(G) to mathbb{R}$ such that for each $z in V(G) cup E(G)$, $f(z) in L(z)$, and for each edge $uv$ of $G$, $sum_{e in E(u)}f(e)+f(u) e sum_{e in E(v)}f(e) + f(v)$. This paper proves that if $G$ decomposes into complete graphs of odd order, then $G$ is total weight $(1,3)$-choosable. As a consequence, every Eulerian graph $G$ of large order and with minimum degree at least $0.91|V(G)|$ is total weight $(1,3)$-choosable. We also prove that any graph $G$ with minimum degree at least $0.999|V(G)|$ is total weight $(1,4)$-choosable.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا