ﻻ يوجد ملخص باللغة العربية
We demonstrate an efficient experimental procedure based on entanglement swapping to determine the Bell nonlocality measure of Horodecki et al. [Phys. Lett. A 200, 340 (1995)] and the fully-entangled fraction of Bennett et al. [Phys. Rev. A 54, 3824 (1996)] of an arbitrary two-qubit polarization-encoded state. The nonlocality measure corresponds to the amount of the violation of the Clauser-Horne-Shimony-Holt (CHSH) optimized over all measurement settings. By using simultaneously two copies of a given state, we measure directly only six parameters. Our method requires neither full quantum state tomography of 15 parameters nor continuous scanning of the measurement bases used by two parties in the usual CHSH inequality tests with four measurements in each optimization step. We analyze how well the measured degrees of Bell nonlocality and other entanglement witnesses (including the fully-entangled fraction and a nonlinear entropic witness) of an arbitrary two-qubit state can estimate its entanglement. In particular, we measured these witnesses and estimated the negativity of various two-qubit Werner states. Our approach could especially be useful for quantum communication protocols based on entanglement swapping.
To realize the practical implementation of device-independent quantum key distribution~(DIQKD), the main difficulty is that its security relies on the detection-loophole-free violation of the Clauser-Horne-Shimony-Holt~(CHSH) inequality, i.e. the CHS
In this paper, we generalize the concept of strong quantum nonlocality from two aspects. Firstly in $mathbb{C}^dotimesmathbb{C}^dotimesmathbb{C}^d$ quantum system, we present a construction of strongly nonlocal quantum states containing $6(d-1)^2$ or
We consider Bell tests in which the distant observers can perform local filtering before testing a Bell inequality. Notably, in this setup, certain entangled states admitting a local hidden variable model in the standard Bell scenario can nevertheles
We investigate whether paradigmatic measurements for quantum state tomography, namely mutually unbiased bases and symmetric informationally complete measurements, can be employed to certify quantum correlations. For this purpose, we identify a simple
We study the Bell nonlocality of high dimensional quantum systems based on quantum entanglement. A quantitative relationship between the maximal expectation value B of Bell operators and the quantum entanglement concurrence C is obtained for even dim