ﻻ يوجد ملخص باللغة العربية
Mathieu Moonshine, the observation that the Fourier coefficients of the elliptic genus on K3 can be interpreted as dimensions of representations of the Mathieu group M24, has been proven abstractly, but a conceptual understanding in terms of a representation of the Mathieu group on the BPS states, is missing. Some time ago, Taormina and Wendland showed that such an action can be naturally defined on the lowest non-trivial BPS states, using the idea of `symmetry surfing, i.e., by combining the symmetries of different K3 sigma models. In this paper we find non-trivial evidence that this construction can be generalized to all BPS states.
The elliptic genus of K3 is an index for the 1/4-BPS states of its sigma model. At the torus orbifold point there is an accidental degeneracy of such states. We blow up the orbifold fixed points using conformal perturbation theory, and find that this
In this paper we address the following two closely related questions. First, we complete the classification of finite symmetry groups of type IIA string theory on $K3times mathbb R^6$, where Niemeier lattices play an important role. This extends earl
textit{Weak moonshine} for a finite group $G$ is the phenomenon where an infinite dimensional graded $G$-module $$V_G=bigoplus_{ngg-infty}V_G(n)$$ has the property that its trace functions, known as McKay-Thompson series, are modular functions. Recen
The flavor moonshine hypothesis is formulated to suppose that all particle masses (leptons, quarks, Higgs and gauge particles -- more precisely, their mass ratios) are expressed as coefficients in the Fourier expansion of some modular forms just as,
In this paper, we represent a continued fraction expression of Mathieu series by a continued fraction formula of Ramanujan. As application, we obtain some new bounds for Mathieu series.