ﻻ يوجد ملخص باللغة العربية
The elliptic genus of K3 is an index for the 1/4-BPS states of its sigma model. At the torus orbifold point there is an accidental degeneracy of such states. We blow up the orbifold fixed points using conformal perturbation theory, and find that this fully lifts the accidental degeneracy of the 1/4-BPS states with h=1. At a generic point near the Kummer surface the elliptic genus thus measures not just their index, but counts the actual number of these BPS states. We comment on the implication of this for symmetry surfing and Mathieu moonshine.
In this paper we address the following two closely related questions. First, we complete the classification of finite symmetry groups of type IIA string theory on $K3times mathbb R^6$, where Niemeier lattices play an important role. This extends earl
We establish a framework for doing second order conformal perturbation theory for the symmetric orbifold Sym$^N(T^4)$ to all orders in $N$. This allows us to compute how 1/4-BPS states of the D1-D5 system on $AdS_3times S^3times T^4$ are lifted as we
Mathieu Moonshine, the observation that the Fourier coefficients of the elliptic genus on K3 can be interpreted as dimensions of representations of the Mathieu group M24, has been proven abstractly, but a conceptual understanding in terms of a repres
Umbral moonshine connects the symmetry groups of the 23 Niemeier lattices with 23 sets of distinguished mock modular forms. The 23 cases of umbral moonshine have a uniform relation to symmetries of $K3$ string theories. Moreover, a supersymmetric ver
BPS quivers for N=2 SU(N) gauge theories are derived via geometric engineering from derived categories of toric Calabi-Yau threefolds. While the outcome is in agreement of previous low energy constructions, the geometric approach leads to several new