ﻻ يوجد ملخص باللغة العربية
The flavor moonshine hypothesis is formulated to suppose that all particle masses (leptons, quarks, Higgs and gauge particles -- more precisely, their mass ratios) are expressed as coefficients in the Fourier expansion of some modular forms just as, in mathematics, dimensions of representations of a certain group are expressed as coefficients in the Fourier expansion of some modular forms. The mysterious hierarchical structure of the quark and lepton masses is thus attributed to that of the Fourier coefficient matrices of certain modular forms. Our intention here is not to prove this hypothesis starting from some physical assumptions but rather to demonstrate that this hypothesis is experimentally verified and, assuming that the string theory correctly describes the natural law, to calculate the geometry (K{a}hler potential and the metric) of the moduli space of the Calabi-Yau manifold, thus providing a way to calculate the metric of Calabi-Yau manifold itself directly from the experimental data.
Mathieu Moonshine, the observation that the Fourier coefficients of the elliptic genus on K3 can be interpreted as dimensions of representations of the Mathieu group M24, has been proven abstractly, but a conceptual understanding in terms of a repres
In this paper we address the following two closely related questions. First, we complete the classification of finite symmetry groups of type IIA string theory on $K3times mathbb R^6$, where Niemeier lattices play an important role. This extends earl
It has recently been shown that F-theory based constructions provide a potentially promising avenue for engineering GUT models which descend to the MSSM. In this note we show that in the presence of background fluxes, these models automatically achie
Umbral moonshine connects the symmetry groups of the 23 Niemeier lattices with 23 sets of distinguished mock modular forms. The 23 cases of umbral moonshine have a uniform relation to symmetries of $K3$ string theories. Moreover, a supersymmetric ver
Modular transformations of string theory are shown to play a crucial role in the discussion of discrete flavor symmetries in the Standard Model. They include CP transformations and provide a unification of CP with traditional flavor symmetries within