ﻻ يوجد ملخص باللغة العربية
We propose a method for detecting the presence of a single spin in a crystal by coupling it to a high-quality factor superconducting planar resonator. By confining the microwave field in a constriction of nanometric dimensions, the coupling constant can be as high as $5-10$,kHz. This coupling affects the amplitude of the field emitted by the resonator, and the integrated homodyne signal allows detection of a single spin with unit signal-to-noise ratio within few milliseconds. We further show that a stochastic master equation approach and a Bayesian analysis of the full time dependent homodyne signal improves this figure by $sim 30%$ for typical parameters.
We experimentally demonstrate a simple and robust protocol for the detection of weak radio-frequency magnetic fields using a single electron spin in diamond. Our method relies on spin locking, where the Rabi frequency of the spin is adjusted to match
Electron and nuclear spins associated with point defects in insulators are promising systems for solid state quantum technology. While the electron spin usually is used for readout and addressing, nuclear spins are exquisite quantum bits and memory s
The recent maturation of hybrid quantum devices has led to significant enhancements in the functionality of a wide variety of quantum systems. In particular, harnessing mechanical resonators for manipulation and control has expanded the use of two-le
Brillouin systems operating in the quantum regime have recently been identified as a valuable tool for quantum information technologies and fundamental science. However, reaching the quantum regime is extraordinarily challenging, owing to the stringe
The ability to nondestructively detect the presence of a single, traveling photon has been a long-standing goal in optics, with applications in quantum information and measurement. Realising such a detector is complicated by the fact that photon-phot