ﻻ يوجد ملخص باللغة العربية
Brillouin systems operating in the quantum regime have recently been identified as a valuable tool for quantum information technologies and fundamental science. However, reaching the quantum regime is extraordinarily challenging, owing to the stringent requirements of combining low thermal occupation with low optical and mechanical dissipation, and large coherent phonon-photon interactions. Here, we propose an on-chip liquid based Brillouin system that is predicted to exhibit ultra-high coherent phonon-photon coupling with exceptionally low acoustic dissipation. The system is comprised of a silicon-based slot waveguide filled with superfluid helium. This type of waveguide supports optical and acoustical traveling waves, strongly confining both fields into a subwavelength-scale mode volume. It serves as the foundation of an on-chip traveling wave Brillouin resonator with a single photon optomechanical coupling rate exceeding $240$kHz. Such devices may enable applications ranging from ultra-sensitive superfluid-based gyroscopes, to non-reciprocal optical circuits. Furthermore, this platform opens up new possibilities to explore quantum fluid dynamics in a strongly interacting condensate.
We present a novel discrete-variable quantum teleportation scheme using pulsed optomechanics. In our proposal, we demonstrate how an unknown optical input state can be transferred onto the joint state of a pair of mechanical oscillators, without phys
We propose a method for detecting the presence of a single spin in a crystal by coupling it to a high-quality factor superconducting planar resonator. By confining the microwave field in a constriction of nanometric dimensions, the coupling constant
We propose an implementation of a quantum router for microwave photons in a superconducting qubit architecture consisting of a transmon qubit, SQUIDs and a nonlinear capacitor. We model and analyze the dynamics of operation of the quantum switch usin
A Quantum Internet, i.e., a global interconnection of quantum devices, is the long term goal of quantum communications, and has so far been based on two-dimensional systems (qubits). Recent years have seen a significant development of high-dimensiona
The role and importance of mechanical properties of cells and tissues in cellular function, development as well as disease has widely been acknowledged, however standard techniques currently used to assess them exhibit intrinsic limitations. Recently