ترغب بنشر مسار تعليمي؟ اضغط هنا

Readout and control of a single nuclear spin with a meta-stable electron spin ancilla

248   0   0.0 ( 0 )
 نشر من قبل Helmut Fedder
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Electron and nuclear spins associated with point defects in insulators are promising systems for solid state quantum technology. While the electron spin usually is used for readout and addressing, nuclear spins are exquisite quantum bits and memory systems. With these systems single-shot readout of nearby nuclear spins as well as entanglement aided by the electron spin has been shown. While the electron spin in this example is essential for readout it usually limits nuclear spin coherence. This has set of the quest for defects with spin-free ground states. Here, we isolate a hitherto unidentified defect in diamond and use it at room temperature to demonstrate optical spin polarization and readout with exceptionally high contrast (up to 45%), coherent manipulation of an individual excited triplet state spin, and coherent nuclear spin manipulation using the triplet electron spin as a meta-stable ancilla. By this we demonstrate nuclear magnetic resonance and Rabi oscillations of the uncoupled nuclear spin in the spin-free electronic ground state. Our study demonstrates that nuclei coupled to single metastable electron spins are useful quantum systems with long memory times despite electronic relaxation processes.



قيم البحث

اقرأ أيضاً

239 - P. London , , J. Scheuer 2013
We report the detection and polarization of nuclear spins in diamond at room temperature by using a single nitrogen-vacancy (NV) center. We use Hartmann-Hahn double resonance to coherently enhance the signal from a single nuclear spin while decouplin g from the noisy spin-bath, which otherwise limits the detection sensitivity. As a proof-of-principle we: (I) observe coherent oscillations between the NV center and a weakly coupled nuclear spin, (II) demonstrate nuclear bath cooling which prolongs the coherence time of the NV sensor by more than a factor of five. Our results provide a route to nanometer scale magnetic resonance imaging, and novel quantum information processing protocols.
We demonstrate optical readout of a single electron spin using cavity quantum electrodynamics. The spin is trapped in a single quantum dot that is strongly coupled to a nanophotonic cavity. Selectively coupling one of the optical transitions of the q uantum dot to the cavity mode results in a spin-dependent cavity reflectivity that enables projective spin measurements by monitoring the reflected intensity of an incident optical field. Using this approach, we demonstrate spin readout fidelity of 0.61 for a quantum dot that has a poor branching ratio of 0.43. Achieving this fidelity using resonance fluorescence from a bare dot would require 43 times improvement in photon collection efficiency.
The understanding of weak measurements and interaction-free measurements has greatly expanded the conceptual and experimental toolbox to explore the quantum world. Here we demonstrate single-shot variable-strength weak measurements of the electron an d the nuclear spin states of a single $^{31}$P donor in silicon. We first show how the partial collapse of the nuclear spin due to measurement can be used to coherently rotate the spin to a desired pure state. We explicitly demonstrate that phase coherence is preserved throughout multiple sequential single-shot weak measurements, and that the partial state collapse can be reversed. Second, we use the relation between measurement strength and perturbation of the nuclear state as a physical meter to extract the tunneling rates between the $^{31}$P donor and a nearby electron reservoir from data, conditioned on observing no tunneling events. Our experiments open avenues to measurement-based state preparation, steering and feedback protocols for spin systems in the solid state, and highlight the fundamental connection between information gain and state modification in quantum mechanics.
We use the electronic spin of a single Nitrogen-Vacancy (NV) defect in diamond to observe the real-time evolution of neighboring single nuclear spins under ambient conditions. Using a diamond sample with a natural abundance of $^{13}$C isotopes, we f irst demonstrate high fidelity initialization and single-shot readout of an individual $^{13}$C nuclear spin. By including the intrinsic $^{14}$N nuclear spin of the NV defect in the quantum register, we then report the simultaneous observation of quantum jumps linked to both nuclear spin species, providing an efficient initialization of the two qubits. These results open up new avenues for diamond-based quantum information processing including active feedback in quantum error correction protocols and tests of quantum correlations with solid-state single spins at room temperature.
The efficient single photon emission capabilities of quantum dot molecules position them as promising platforms for quantum information processing. Furthermore, quantum dot molecules feature a decoherence-free subspace that enables spin qubits with l ong coherence time. To efficiently read out the spin state within this subspace requires optically cycling isolated transitions that originate from a triplet manifold within the quantum dot molecule. We propose and theoretically study a two-stage spin readout protocol within this decoherence-free subspace that allows single-shot readout performance. The process incorporates a microwave $pi$-pulse and optically cycling the isolated transitions, which induces fluorescence that allows us to identify the initial spin state. This protocol offers enhanced readout fidelity compared to previous schemes that rely on the excitation of transitions that strongly decay to multiple ground states or require long initialization via slow, optically forbidden transitions. By simulating the performance of the protocol, we show that an optimal spin readout fidelity of over 97% and single-shot readout performance are achievable for a photon collection efficiency of just 0.12%. This high readout performance for such realistic photon collection conditions within the decoherence-free subspace expands the potential of quantum dot molecules as building blocks for quantum networks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا