ﻻ يوجد ملخص باللغة العربية
Electron and nuclear spins associated with point defects in insulators are promising systems for solid state quantum technology. While the electron spin usually is used for readout and addressing, nuclear spins are exquisite quantum bits and memory systems. With these systems single-shot readout of nearby nuclear spins as well as entanglement aided by the electron spin has been shown. While the electron spin in this example is essential for readout it usually limits nuclear spin coherence. This has set of the quest for defects with spin-free ground states. Here, we isolate a hitherto unidentified defect in diamond and use it at room temperature to demonstrate optical spin polarization and readout with exceptionally high contrast (up to 45%), coherent manipulation of an individual excited triplet state spin, and coherent nuclear spin manipulation using the triplet electron spin as a meta-stable ancilla. By this we demonstrate nuclear magnetic resonance and Rabi oscillations of the uncoupled nuclear spin in the spin-free electronic ground state. Our study demonstrates that nuclei coupled to single metastable electron spins are useful quantum systems with long memory times despite electronic relaxation processes.
We report the detection and polarization of nuclear spins in diamond at room temperature by using a single nitrogen-vacancy (NV) center. We use Hartmann-Hahn double resonance to coherently enhance the signal from a single nuclear spin while decouplin
We demonstrate optical readout of a single electron spin using cavity quantum electrodynamics. The spin is trapped in a single quantum dot that is strongly coupled to a nanophotonic cavity. Selectively coupling one of the optical transitions of the q
The understanding of weak measurements and interaction-free measurements has greatly expanded the conceptual and experimental toolbox to explore the quantum world. Here we demonstrate single-shot variable-strength weak measurements of the electron an
We use the electronic spin of a single Nitrogen-Vacancy (NV) defect in diamond to observe the real-time evolution of neighboring single nuclear spins under ambient conditions. Using a diamond sample with a natural abundance of $^{13}$C isotopes, we f
The efficient single photon emission capabilities of quantum dot molecules position them as promising platforms for quantum information processing. Furthermore, quantum dot molecules feature a decoherence-free subspace that enables spin qubits with l