ﻻ يوجد ملخص باللغة العربية
Quantum matter provides an effective vacuum out of which arise emergent particles not corresponding to any experimentally detected elementary particle. Topological quantum materials in particular have become a focus of intense research in part because of the remarkable possibility to realize Majorana fermions, with their potential for new, decoherence-free quantum computing architectures. In this paper we undertake a study on high-quality single crystal of $alpha-RuCl_3$ which has been identified as a material realizing a proximate Kitaev state, a topological quantum state with magnetic Majorana fermions. Four-dimensional tomographic reconstruction of dynamical correlations measured using neutrons is uniquely powerful for probing such magnetic states. We discover unusual signals, including an unprecedented column of scattering over a large energy interval around the Brillouin zone center which is remarkably stable with temperature. This is straightforwardly accounted for in terms of the Majorana excitations present in Kitaevs topological quantum spin liquid. Other, more delicate, features in the scattering can be transparently associated with perturbations to an ideal model. This opens a window on emergent magnetic Majorana fermions in correlated materials.
A triangular lattice selenide series of rare earth (RE), CsRESe2, were synthesized as large single crystals using a flux growth method. This series stabilized in either trigonal (R-3m) or hexagonal (P63/mmc) crystal systems. Physical properties of Cs
The quasi two-dimensional Mott insulator $alpha$-RuCl$_3$ is proximate to the sought-after Kitaev quantum spin liquid (QSL). In a layer of $alpha$-RuCl$_3$ on graphene the dominant Kitaev exchange is further enhanced by strain. Recently, quantum osci
The Kitaev model on a honeycomb lattice predicts a paradigmatic quantum spin liquid (QSL) exhibiting Majorana Fermion excitations. The insight that Kitaev physics might be realized in practice has stimulated investigations of candidate materials, rec
The propagation of edge localized spin waves (E-SWs) in yttrium iron garnet (YIG) microstripes with/without the proximate magnetic microstructures is investigated by micromagnetic simulations. A splitting of the dispersion curve with the presence of
The gapless Bogoliubov-de Gennes (BdG) quasiparticles of a clean three dimensional spinless $p_x+ip_y$ superconductor provide an intriguing example of a thermal Hall semimetal (ThSM) phase of Majorana-Weyl fermions in class D of the Altland-Zirnbauer