ﻻ يوجد ملخص باللغة العربية
The gapless Bogoliubov-de Gennes (BdG) quasiparticles of a clean three dimensional spinless $p_x+ip_y$ superconductor provide an intriguing example of a thermal Hall semimetal (ThSM) phase of Majorana-Weyl fermions in class D of the Altland-Zirnbauer symmetry classification; such a phase can support a large anomalous thermal Hall conductivity and protected surface Majorana-Fermi arcs at zero energy. We study the effect of quenched disorder on such a topological phase with both numerical and analytical methods. Using the kernel polynomial method, we compute the average and typical density of states for the BdG quasiparticles; based on this, we construct the disordered phase diagram. We show for infinitesimal disorder, the ThSM is converted into a diffusive thermal Hall metal (ThDM) due to rare statistical fluctuations. Consequently, the phase diagram of the disordered model only consists of ThDM and thermal insulating phases. Nonetheless, there is a cross-over at finite energies from a ThSM regime to a ThDM regime, and we establish the scaling properties of the avoided quantum critical point which marks this cross-over. Additionally, we show the existence of two types of thermal insulators: (i) a trivial thermal band insulator (ThBI) [or BEC phase] supporting only exponentially localized Lifshitz states (at low energy), and (ii) a thermal Anderson insulator (AI) at large disorder strengths. We determine the nature of the two distinct localization transitions between these two types of insulators and ThDM.We also discuss the experimental relevance of our results for three dimensional, time reversal symmetry breaking, triplet superconducting states.
We numerically study the effect of short ranged potential disorder on massless noninteracting three-dimensional Dirac and Weyl fermions, with a focus on the question of the proposed quantum critical point separating the semimetal and diffusive metal
Progress in the understanding of quantum critical properties of itinerant electrons has been hindered by the lack of effective models which are amenable to controlled analytical and numerically exact calculations. Here we establish that the disorder
Disorder in Weyl semimetals and superconductors is surprisingly subtle, attracting attention and competing theories in recent years. In this brief review, we discuss the current theoretical understanding of the effects of short-ranged, quenched disor
We theoretically study the single particle Green function of a three dimensional disordered Weyl semimetal using a combination of techniques. These include analytic $T$-matrix and renormalization group methods with complementary regimes of validity,
We study the properties of the avoided or hidden quantum critical point (AQCP) in three dimensional Dirac and Weyl semi-metals in the presence of short range potential disorder. By computing the averaged density of states (along with its second and f