ﻻ يوجد ملخص باللغة العربية
We aim to study the set of color sets of continuous regions of an image given as a matrix of $m$ rows over $ngeq m$ columns where each element in the matrix is an integer from $[1,sigma]$ named a {em color}. The set of distinct colors in a region is called fingerprint. We aim to compute, index and query the fingerprints of all rectangular regions named rectangles. The set of all such fingerprints is denoted by ${cal F}$. A rectangle is {em maximal} if it is not contained in a greater rectangle with the same fingerprint. The set of all locations of maximal rectangles is denoted by $mathcal{L}.$ We first explain how to determine all the $|mathcal{L}|$ maximal locations with their fingerprints in expected time $O(nm^2sigma)$ using a Monte Carlo algorithm (with polynomially small probability of error) or within deterministic $O(nm^2sigmalog(frac{|mathcal{L}|}{nm^2}+2))$ time. We then show how to build a data structure which occupies $O(nmlog n+mathcal{|L|})$ space such that a query which asks for all the maximal locations with a given fingerprint $f$ can be answered in time $O(|f|+loglog n+k)$, where $k$ is the number of maximal locations with fingerprint $f$. If the query asks only for the presence of the fingerprint, then the space usage becomes $O(nmlog n+|{cal F}|)$ while the query time becomes $O(|f|+loglog n)$. We eventually consider the special case of squared regions (squares).
Given a string $S$ of length $n$, the classic string indexing problem is to preprocess $S$ into a compact data structure that supports efficient subsequent pattern queries. In this paper we consider the basic variant where the pattern is given in com
The classic string indexing problem is to preprocess a string S into a compact data structure that supports efficient pattern matching queries. Typical queries include existential queries (decide if the pattern occurs in S), reporting queries (return
In this paper we describe algorithms for computing the BWT and for building (compressed) indexes in external memory. The innovative feature of our algorithms is that they are lightweight in the sense that, for an input of size $n$, they use only ${n}
The field of succinct data structures has flourished over the last 16 years. Starting from the compressed suffix array (CSA) by Grossi and Vitter (STOC 2000) and the FM-index by Ferragina and Manzini (FOCS 2000), a number of generalizations and appli
In the 3SUM-Indexing problem the goal is to preprocess two lists of elements from $U$, $A=(a_1,a_2,ldots,a_n)$ and $B=(b_1,b_2,...,b_n)$, such that given an element $cin U$ one can quickly determine whether there exists a pair $(a,b)in A times B$ whe