ﻻ يوجد ملخص باللغة العربية
Given a string $S$ of length $n$, the classic string indexing problem is to preprocess $S$ into a compact data structure that supports efficient subsequent pattern queries. In this paper we consider the basic variant where the pattern is given in compressed form and the goal is to achieve query time that is fast in terms of the compressed size of the pattern. This captures the common client-server scenario, where a client submits a query and communicates it in compressed form to a server. Instead of the server decompressing the query before processing it, we consider how to efficiently process the compressed query directly. Our main result is a novel linear space data structure that achieves near-optimal query time for patterns compressed with the classic Lempel-Ziv compression scheme. Along the way we develop several data structural techniques of independent interest, including a novel data structure that compactly encodes all LZ77 compressed suffixes of a string in linear space and a general decomposition of tries that reduces the search time from logarithmic in the size of the trie to logarithmic in the length of the pattern.
The field of succinct data structures has flourished over the last 16 years. Starting from the compressed suffix array (CSA) by Grossi and Vitter (STOC 2000) and the FM-index by Ferragina and Manzini (FOCS 2000), a number of generalizations and appli
The recent introduction of learned indexes has shaken the foundations of the decades-old field of indexing data structures. Combining, or even replacing, classic design elements such as B-tree nodes with machine learning models has proven to give out
The classic string indexing problem is to preprocess a string S into a compact data structure that supports efficient pattern matching queries. Typical queries include existential queries (decide if the pattern occurs in S), reporting queries (return
In the 3SUM-Indexing problem the goal is to preprocess two lists of elements from $U$, $A=(a_1,a_2,ldots,a_n)$ and $B=(b_1,b_2,...,b_n)$, such that given an element $cin U$ one can quickly determine whether there exists a pair $(a,b)in A times B$ whe
We aim to study the set of color sets of continuous regions of an image given as a matrix of $m$ rows over $ngeq m$ columns where each element in the matrix is an integer from $[1,sigma]$ named a {em color}. The set of distinct colors in a region i