ﻻ يوجد ملخص باللغة العربية
We consider an anisotropic first-order ODE aggregation model and its approximation by a second-order relaxation system. The relaxation model contains a small parameter $varepsilon$, which can be interpreted as inertia or response time. We examine rigorously the limit $varepsilon to 0$ of solutions to the relaxation system. Of major interest is how discontinuous (in velocities) solutions to the first-order model are captured in the zero-inertia limit. We find that near such discontinuities, solutions to the second-order model perform fast transitions within a time layer of size $mathcal{O}(varepsilon^{2/3})$. We validate this scale with numerical simulations.
We use the method of atomic decomposition to build new families of function spaces, similar to Besov spaces, in measure spaces with grids, a very mild assumption. Besov spaces with low regularity are considered in measure spaces with good grids, and
In a previous work we introduced Besov spaces $mathcal{B}^s_{p,q}$ defined on a measure spaces with a good grid, with $pin [1,infty)$, $qin [1,infty]$ and $0< s< 1/p$. Here we show that classical Besov spaces on compact homogeneous spaces are example
In recent work, Chow, Huang, Li and Zhou introduced the study of Fokker-Planck equations for a free energy function defined on a finite graph. When $Nge 2$ is the number of vertices of the graph, they show that the corresponding Fokker-Planck equatio
We consider the SIR model and study the first time the number of infected individuals begins to decrease and the first time this population is below a given threshold. We interpret these times as functions of the initial susceptible and infected popu
We investigate the long term behavior in terms of global attractors, as time goes to infinity, of solutions to a continuum model for biological aggregations in which individuals experience long-range social attraction and short range dispersal. We co