ﻻ يوجد ملخص باللغة العربية
In recent work, Chow, Huang, Li and Zhou introduced the study of Fokker-Planck equations for a free energy function defined on a finite graph. When $Nge 2$ is the number of vertices of the graph, they show that the corresponding Fokker-Planck equation is a system of $N$ nonlinear ordinary differential equations defined on a Riemannian manifold of probability distributions. The different choices for inner products on the space of probability distributions result in different Fokker-Planck equations for the same process. Each of these Fokker-Planck equations has a unique global equilibrium, which is a Gibbs distribution. In this paper we study the {em speed of convergence} towards global equilibrium for the solution of these Fokker-Planck equations on a graph, and prove that the convergence is indeed exponential. The rate as measured by the decay of the $L_2$ norm can be bound in terms of the spectral gap of the Laplacian of the graph, and as measured by the decay of (relative) entropy be bound using the modified logarithmic Sobolev constant of the graph. With the convergence result, we also prove two Talagrand-type inequalities relating relative entropy and Wasserstein metric, based on two different metrics introduced in [CHLZ] The first one is a local inequality, while the second is a global inequality with respect to the lower bound metric from [CHLZ].
We consider a Vlasov-Fokker-Planck equation governing the evolution of the density of interacting and diffusive matter in the space of positions and velocities. We use a probabilistic interpretation to obtain convergence towards equilibrium in Wasser
One way to define the concentration of measure phenomenon is via Talagrand inequalities, also called transportation-information inequalities. That is, a comparison of the Wasserstein distance from the given measure to any other absolutely continuous
In the first part of this work, we consider second order supersymmetric differential operators in the semiclassical limit, including the Kramers-Fokker-Planck operator, such that the exponent of the associated Maxwellian $phi$ is a Morse function wit
In this paper we study second order stochastic differential equations with measurable and density-distribution dependent coefficients. Through establishing a maximum principle for kinetic Fokker-Planck-Kolmogorov equations with distribution-valued in
This article considers the eigenvalue problem for the Sturm-Liouville problem including $p$-Laplacian begin{align*} begin{cases} left(vert uvert^{p-2}uright)+left(lambda+r(x)right)vert uvert ^{p-2}u=0,,, xin (0,pi_{p}), u(0)=u(pi_{p})=0, end{cases} e